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Motivation: measles outbreak in Hagelloch, Germany 1861

• 188 susceptible children

• 56 households

• Initial infection date: 10/30/1861

• Final infection date: 01/27/1862

• 12 deaths

Hagelloch, Germany
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What can we learn from this outbreak?

• Was this outbreak of measles comparable to others?

• Does the spatial/class structure contribute anything?

• How easy is it to become infected?
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We want to make models to answer these questions

• Specify how and why a disease moves through a population

• ”A Thousand and One Epidemic Models” (Hethcote 1994)
• epidemiological compartment structure, i.e. states (susceptible, infectious, recovered, …)

• incidence and distribution of waiting times

• demographic structure
• epidemiological-demographic interactions

• homogeneous interaction:

• P(Am,t = i|Am,t−1 = j) = P(An,t = i|An,t−1 = j) for individuals Am and An

• Estimate parameters

• Understand the disease

• Change the next outbreak

Which model(s) do we choose?
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Compartment (CM) and agent-based (AM) models

Given disease-level states (e.g. Susceptible, Infectious)…

• CM– (Stochastic) equations which
specify how individuals move through a
disease

• e.g. S(t) = S(t− 1)− β · S(t− 1)

• Base unit is # of individuals in a state

• homogeneous interactions among
individuals in different states

• AM– (Stochastic) simulations which
specify how agents move through a
disease

• e.g. At,n = I if condition E|F|G

• Base unit is an agent (an individual)

• heterogeneous interactions among
individuals in different states
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We compare CMs to AMs

Quality CM AM

1. Interpretable ! !

2. Accessible !

3. Modular !

4. Individual info !

5. Fast computer run time !

6. Low computer memory !

7. Theory !

8. Parameter estimation !

9. Statistical software ! !

CM AM

5, 6, 7, 8 2, 3, 41, 9
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We compare CMs to AMs

Quality CM AM

1. Interpretable ! !

2. Accessible ! !

3. Modular ! !

4. Individual info ! !

5. Fast computer run time ! !

6. Low computer memory ! !

7. Theory ! !

8. Parameter estimation ! !

9. Statistical software ! !

CM AM

?

Are these classes statistically the same? 6



Dissertation Goals

• 1. Statistically relate CMs and AMs

• 2. Model selection methodology for CM-AM pairs

• 3. Apply methods to applications
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Relating CMs and AMs



Kermack and McKendrick CM (1927) - Deterministic transitions

Epidemiological states
• S(t) - # Susceptible individuals at t
• I(t) - # Infectious individuals at t
• R(t) - # Recovered individuals at t

Demographics and interactions
• β – rate of infection
• γ – rate of recovery
• N – fixed population size
• S(0), I(0),R(0) known

Incidence and distributions 

∆S
∆t = −S× β I

N

∆I
∆t = S× β I

N − I× γ

∆R
∆t = I× γ
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Stochastic CM based on K&M (Gallagher and Eddy, 2017a)

For t = 1, . . . , T, S0, I0, R0 known

St |St−1, It−1 = St−1 − Binomial
(
St−1, β

I(t− 1)
N

)
Rt |St−1, It−1 = Rt−1 + Binomial (I(t− 1), γ)

• Model is unbiased w.r.t original K&M equations

• We show recursive/closed form of variance – uncertainty ↑ as t ↑

• We estimate β̂, γ̂ using likelihood or sum of squares
• See (Gallagher et al., in prep. 2019a)
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We can also make an AM for this scenario (Gallagher and Eddy, 2017a)

For an agent At,n,n = 1, 2, . . . ,N, with A0 known, the agent update is given by for
t = 1, . . . , T

At,n|At−1 =


1+ Bernoulli

(
βXt−1,2
N

)
if At−1,n = 1

2+ Bernoulli (γ) if At−1,n = 2
3 if At−1,n = 3

At,n ∈ {1, 2, 3} where 1→ S, 2→ I, and 3→ R

Let Xt,k =
∑N

n=1 I {At,n = k} be the # of agents in state k at time t.

SIR Notation: (Xt,1 → SAMt , Xt,2 → IAMt , Xt,3 → RAMt )
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For a non-random SIR-CM, we can write “equiv.” CM-AM pairs

Ex. K&M SIR

CM

St |St−1, It−1 = St−1 − Binomial
(
St−1, β

It−1
N

)
Rt |St−1, It−1 = Rt−1 + Binomial (It−1, γ)

AM

At,n|At−1 =


1+ Bernoulli

(
βXt−1,2
N

)
if At−1,n = 1

2+ Bernoulli (γ) if At−1,n = 2
3 if At−1,n = 3

Take away: (St, It,Rt)(CM)
d
= (St, It,Rt)(AM) for all t = 0, . . . , T
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‘Proof’ by picture

CM AM
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We can write “equivalent” CM-AM pairs (Gallagher and Eddy, 2017b)

Theorem 1: Given deterministic transition matrix D(t) of size K× K , there exists a
stochastic CM-AM pair such that XCM d

= XAM and the models are unbiased w.r.t D(t)

• K is the number of states
• Dij(t) is the non-negative # of individuals moving from state i to j from time t to t+ 1
• Row sums are total number individuals moving out of state i
• Column sums are total number of individuals moving into state j
• D(t)− DT(t) gives back the original difference equations
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Ex. SIR D(t):

D(t) =

 S(t)− βS(t) I(t)N βS(t) I(t)N 0
0 I(t)− I(t)γ I(t)γ
0 0 R(t)


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We can write “equivalent” CM-AM pairs (Gallagher and Eddy, 2017b)

Theorem 1: Given deterministic transition matrix D(t) of size K× K , there exists a
stochastic CM-AM pair such that XCM d

= XAM and the models are unbiased w.r.t D(t)

• K is the number of states
• Dij(t) is the non-negative # of individuals moving from state i to j from time t to t+ 1
• Row sums are total number individuals moving out of state i
• Column sums are total number of individuals moving into state j
• D(t)− DT(t) gives back the original difference equations

Given D, there exists a stochastic, equivalent CM-AM pair
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We do not need D to have CM-AM pairs

Theorem 2 (Gallagher and Eddy, 2019a).

Any CM with M states has an equivalent AM pair with M states and homogeneous agent
interactions, in terms of numbers of individuals in each state at each time

• i.e. XCM d
= XAM
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We do not need D to have CM-AM pairs

Result 3.

Each AM has an equivalent CM pair provided we adjust the number of total states K∗, in
terms of numbers of individuals in each state at each time.

• M – number of disease level states. (e.g. SIR =⇒ M=3)
• N – number of individuals/agents
• K∗ = MN

IS R
vs.

I1S1 R1

I2S2 R2

...

INSN RN
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We do not need D to have CM-AM pairs

• Theorem 2 (Gallagher and Eddy, 2019a). Any CM with M states has an equivalent AM
pair with M states and homogeneous agent interactions, in terms of numbers of
individuals in each state at each time.

• Result 3. Each AM has an equivalent CM pair provided we adjust the number of total
states K∗, in terms of numbers of individuals in each state at each time. provided we
adjust the number of total states K∗

• M – number of disease level states. (e.g. SIR =⇒ M=3)
• N – number of individuals/agents
• K∗ = MN

• Implication: M ≤ K∗ ≤ MN

Takeaway: Finding an equivalent CM-AM pair means finding K∗, the number
of states needed to model the outbreak
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Implications of CM-AM pairs

As a result of our CM-AM pairs, we suggest the following modeling workflow:

1. Estimate K∗ in the CM-view
• Select best model with K∗ total states
• Estimate parameters for model

2. Analyze scenarios in AM-view

16
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Estimate K∗ for SIR



Gallagher and Eddy 2019b develop methods to …

1. Visualize the SIR in a linear-regression framework

2. View all three states simultaneously with a ternary plot

3. Quantify how far “similar” agent-interaction structures are in terms of summary
statistics

17



We turn ternary plots into a model diagnostic

• St + It + Rt ≡ N =⇒ (St, It,Rt) lay in a constrained plane

• Used in Safan 2006 to visualize theoretical equilibria

• We extend the plot to include observations, estimates, confidence regions, and time

18



Example: Classic SIR - Two S groups
Picture of model with Binomial draws:
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Data:
• (st, it, rt) for t = 1, . . . , 100
• β1 = 0.8, β2 = 0.3, γ = 0.2

Estimate:
• E[(St, It,Rt)] for t = 1, . . . , 100
• β̂ = 0.5, γ̂ = 0.2
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Example: Classic SIR - Two Susceptible groups
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Example: Classic SIR - Two Susceptible groups

●
●

●
●

●
●

●

●

●
● ●

●
●

●
●

●

●
●

●
●

●
●
●●●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

IS

R

Data ●Est. Obs. Type Obs Est.

β1 = 0.8;β2 = 0.3,γ = 0.2; β̂ = 0.5, γ̂ = 0.2

Group 1 obs. and ests. with 95% CR

●●●●
● ●

● ● ●
●

●
● ●

●
● ●

●
● ●

●●●
●●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

IS

R

Data ●Est. Obs. Type Obs Est.

β1 = 0.8;β2 = 0.3,γ = 0.2; β̂ = 0.5, γ̂ = 0.2

Group 2 obs. and ests. with 95% CR

20



Example: Classic SIR - Two Susceptible groups

Takeaway:

• With all aspects in the ternary plot, we can assess our model

• Although this is restricted to SIR disease-level states, we can still look at groups of
individuals within these states

• There is a possible extension to visualizing the SEIR model in 3D
• E - “Exposed” state - already infected but not yet infectious

21



Measles!



About measles

• Highly infectious childhood disease (R0 = 19)
(Anderson & May, 1992)

• Influenza R0 ≈ 1.2

• Prodromes – initial symptoms
• high fever, cough, runny nose, red, watery eyes
• 2-3 days after, tiny white spots in mouth

• Measles rash and high fever: 3-5 days after
symptoms begin

• 2-3 days after rash, child recovers

• CDC reports person is infectious ±4 days after
rash appearance

• Lifelong immunity after infection 22



Measles: data from R surveillance package

ID Household Class Age Sex I R Infector

1 61 1st 7 F 22 29 45
2 61 1st 6 F 23 32 45
3 62 pre-K 4 F 29 37 NA
4 63 2nd 13 M 27 32 180
5 63 1st 8 F 22 31 45

23



Measles: SIR curve of outbreak
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Measles: questions about Hagelloch

• What is K∗, the minimal number of states?

• What is the associated CM-AM pair?

• What is R0?

• What would have happened…
• if we generally reduce the infectivity?

• if we isolate infectious individuals?

• if we shut down the school?
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Measles: reducing the infectivity

Scenario 1

1. We have estimate(s) of β̂, the infection parameter

2. Assume we can reduce infectivity to ρ · β̂

3. How would outbreak have changed?

Analysis 1

1. Initialize our CM-AM pair with estimates

2. Vary ρ in our simulations

3. Analyze resulting outbreaks
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Measles: reducing the infectivity results
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Measles: case study summary (see Chs. 6-7)

• What is K∗, the minimal number of states?
• K∗ = 6

• What is R0?
• Between 4-5.

• What is the associated CM-AM pair?
• S2I2R2 with groups before and after t = 25

• What would have happened…
• if we reduced the infectivity of the disease?

• Want to reduce β̂ by about half
• if we isolated infectious individuals?

• Reduce size of epidemic, even if isolated 8 days after initial infection
• if we shut down the school?

• Inconclusive results due to assumptions of model
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Conclusions



We improve disease inference through CM-AM pairs

1. Statistically relate CMs and AMs

2. Develop methodology for model selection

3. Apply methodology to measles case study
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We improve disease inference through CM-AM pairs

1. Statistically relate CMs and AMs !
• CM-AM pairs with D, a pre-defined transition matrix
• General CM-AM pairs
• Importance of K∗, minimum number of states

2. Develop methodology for model selection !
• log-linear plot
• ternary plot
• quantifying differences for similar agent-interaction structures

3. Apply methodology to measles case study !
• Model selection for observed data
• R0 = 4-5
• Examination of hypothetical scenarios
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Dissertation and other work

• Ebola case study

• Western District, Sierra Leone 2014-2015

• 8,000+ cases

• Population of ∼ 1.4 million

• SPEW synthetic agents (Gallagher et al. 2018)

• Focus on sensitivity to initial conditions

• Importance of N, the effective population size

• catalyst - R package with code for all my dissertation work

• SPEW and associated R package spew (Richardson et al., 2018)

• “Nine ways to estimate R0 in the SIR model” (Gallagher et al. In prep.)

• “Opening up the court (surface) in tennis” (Gallagher et al. In revision) 30



Future work

• What is the bias-variance trade-off for choosing a smaller (larger) K∗?

• How can we incorporate N as a random variable?

• Explore implementation of different vaccine trials in CM-AM pairs
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Hagelloch, Germany 1861 & Pittsburgh, PA 2019

What links the two?

Measles
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What links the two?

Measles
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Thank you.

Questions?
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Hagelloch physical locations
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861

0

50

100

150

200

250

0 100 200
Meters

M
et

er
s

State

S

I

R

Day 19

34



Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Measles: isolation

Scenario 2

1. We have bet fit estimates for our selected model

2. Isolate infectious individuals after delay period d

3. How would outbreak have changed?

Analysis 2

1. Initialize our CM-AM pair with estimates

2. Vary d in our simulations

3. Analyze resulting outbreaks
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Measles: isolation
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Measles: school closure

Scenario 3

1. We have bet fit estimates for our selected model

2. Close school after closure threshold Cs is met

3. How would outbreak have changed?

Analysis 3

1. Initialize our CM-AM pair with estimates

2. Vary Cs in our simulations

3. Analyze resulting outbreaks
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Measles: school closure
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Measles: model selection

• Used EDA, basic
clustering to find
potential groups

• Fit SIR models with
maximum
log-likelihood

• Used MSE, AIC, and
novel plots to assess
fit

• Selected two models
with two groups of
agents
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Measles: model selection

• Used EDA, basic
clustering to find
potential groups

• Fit SIR models with
maximum
log-likelihood
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Measles: model selection

• Used EDA, basic
clustering to find
potential groups

• Fit SIR models with
maximum
log-likelihood

• Used MSE, AIC, and
novel plots to assess
fit

• Selected two models
with two groups of
agents

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ● ●

●
●

●
●

● ● ●
●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
● ●

● ● ● ● ●
●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

R

I

S

0 20 40

0

50

100

0

50

100

0

50

100

Time

%
 o

f i
nd

iv
id

ua
ls

Model Avg. 9 11

Hagelloch estimates and 95% CI

39



Measles: the reproduction number R0

Previous estimates:

• R̂0 = 17-19 (Anderson and May 1992)
• R̂0 = 6-7 (Getz 2016)

Our estimate(s):

Model # Groups Interaction Partition R(1)
0 95% CI R(2)

0 95% CI

1 1 Homogeneous 4.94 [4.68, 5.21]
2 2 Homogeneous tI > 25 4.17 [3.89, 4.57] 2.49 [2.37, 2.62]
3 2 Heterogeneous tI > 25 3.13 [2.84, 3.41] 4.35 [4.23, 4.48]

40



Measles: the reproduction number R0

Takeaways:

• R0 ≈ 4-5

• Difference in infectivity before and after day t = 25

• Which group is more infectious depends on our assumptions of interaction
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Ebola



Ebola in Western District, Sierra Leone

1000 2000 3000 4000 5000
Population Density Infection ●

Western District, Sierra Leone
Imputed 2014−2015 Ebola infection locations
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Ebola



Ebola in Western District, Sierra Leone
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Ebola in Western District, Sierra Leone
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Model Avg. 1

β = 0. 16; γ = 0. 12; N = 18758
2014−2015 Ebola outbreak and best fit SIR model (by MSE)
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