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Motivation: measles outbreak in Hagelloch, Germany 1861
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What can we learn from this outbreak?

- Was this outbreak of measles comparable to others?
- Does the spatial/class structure contribute anything?

- How easy is it to become infected?



We want to make models to answer these questions

- Specify how and why a disease moves through a population
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We want to make models to answer these questions

- Specify how and why a disease moves through a population

- "A Thousand and One Epidemic Models” (Hethcote 1994)
- epidemiological compartment structure, i.e. states (susceptible, infectious, recovered, ...)

- incidence and distribution of waiting times

- demographic structure
- epidemiological-demographic interactions
- homogeneous interaction:

© P(Am,t = i|Am,t—1 =j) = P(An,t = i|An,t—1 =) for individuals A, and Ap
- Estimate parameters
- Understand the disease

- Change the next outbreak

Which model(s) do we choose?



Compartment (CM) and agent-based (AM) models

Given disease-level states (e.g. Susceptible, Infectious)...

- CM- (Stochastic) equations which
specify how individuals move through a
disease

ceg S()=S(t—-1)—-8-S(t—-1)
- Base unit is # of individuals in a state

- homogeneous interactions among
individuals in different states



Compartment (CM) and agent-based (AM) models

Given disease-level states (e.g. Susceptible, Infectious)...

- CM- (Stochastic) equations which - AM- (Stochastic) simulations which
specify how individuals move through a specify how agents move through a
disease disease

ceg S(t)=S(t-1)—-p8-S(t-"1) - eg. A,y = | if condition E|F|G
- Base unit is # of individuals in a state - Base unit is an agent (an individual)
- homogeneous interactions among - heterogeneous interactions among

individuals in different states individuals in different states



We compare CMs to AMs
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We compare CMs to AMs

Quality CM  AM
1. Interpretable v
2. Accessible v 7/
3. Modular v
4. Individual info v o/
5. Fast computer runtime v vV
6. Low computer memory vV
7. Theory v /
8. Parameter estimation v /
9. Statistical software v

Are these classes statistically the same?



Dissertation Goals

1. Statistically relate and
2. Model selection methodology for C/Vi-  pairs

3. Apply methods to applications



Relating CMs and AMs



Kermack and McKendrick CM (1927) - Deterministic transitions

Epidemiological states
- S(t) - # Susceptible individuals at t
- I(t) - # Infectious individuals at t
- R(t) - # Recovered individuals at t
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Kermack and McKendrick CM (1927) - Deterministic transitions

Epidemiological states Demographics and interactions
- S(t) - # Susceptible individuals at t - B - rate of infection
- I(t) - # Infectious individuals at t - ~ - rate of recovery
- R(t) - # Recovered individuals at t - N - fixed population size

- 5(0),1(0),R(0) known
Incidence and distributions
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Stochastic CM based on K&M (Gallagher and Eddy, 2017a)

Fort=1,...,T, So, lo, Ro known

N
R: |St,1, lt—1 = Re—1 + Blnomlal(/(t = 1),’}/)

. . I(t—1
S[ |St,1, It,1 = Stfq — Binomial (St1,ﬁ ( ))

- Model is unbiased w.rt original K&M equations
- We show recursive/closed form of variance — uncertainty 1 as t 1

- We estimate $3, 4 using likelihood or sum of squares
- See (Gallagher et al,, in prep. 2019a)



We can also make an AM for this scenario (Gallagher and Eddy, 2017a)

Foran agentA,,n=1,2,...,N, with Ag known, the agent update is given by for
t=1,...,T

1+ Bernoulli (%) ifA_qn="1
AtnlAi—1 = § 2+ Bernoulli (v) if Ar_qp =2
3 ifAi_1,=3
Ain€{1,2,3} where1—5,2—1/,and3 =R

Let X.r = So0_, Z {Acn = R} be the # of agents in state k at time t.

SIR Notation: (Xm — S?M, Xt,Z — IAM, Xt73 = R?M)



For a non-random SIR-CM, we can write “equiv.” CM-AM pairs

Ex. K&M SIR
M
. . l
St [St—1, lt—1 = St—1 — Binomial (St 1,3 tN1)
R: |5t717 lt—q = Re—1 + Binomial(lt,q,v)
AM

1+ Bernoulli (%) if Armin =1

AtnlAt—1 =4 2+ Bernoulli (v) ifAi_1n=2
3 if Ay =3

Take away: (St I, R)™ £ (Sp, I, R)™™ forallt =0,...,T



‘Proof’ by picture

Simulations of SIR

N =1000, B =0.50, y=0.25, Sy = 950, lo =50
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We can write “equivalent” CM-AM pairs (Gallagher and Eddy, 2017b)

Theorem 1: Given deterministic transition matrix D(t) of size K x K, there exists a
stochastic CM-AM pair such that X" £ XA and the models are unbiased w.rt D(t)

- Kis the number of states

- Dj(t) is the non-negative # of individuals moving from state i to j from time t to t + 1
- Row sums are total number individuals moving out of state i

- Column sums are total number of individuals moving into state j

- D(t) — D'(t) gives back the original difference equations
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We can write “equivalent” CM-AM pairs (Gallagher and Eddy, 2017b)

Theorem 1: Given deterministic transition matrix D(t) of size K x K, there exists a
stochastic CM-AM pair such that XM £ XA and the models are unbiased w.rt D(t)

- Kis the number of states

- Dj(t) is the non-negative # of individuals moving from state i to j from time t to t + 1
- Row sums are total number individuals moving out of state i

- Column sums are total number of individuals moving into state j

- D(t) — D'(t) gives back the original difference equations

Given D, there exists a stochastic, equivalent CM-AM pair



We do not need D to have CM-AM pairs

Theorem 2 (Gallagher and Eddy, 2019a).

Any CM with M states has an equivalent AM pair with M states and homogeneous agent
interactions, in terms of numbers of individuals in each state at each time

g, XCMI D M



We do not need D to have CM-AM pairs

Result 3.

Each AM has an equivalent CM pair provided we adjust the number of total states K*, in
terms of numbers of individuals in each state at each time.

- M - number of disease level states. (e.g. SIR = M=3)
- N - number of individuals/agents
+ K* = MN
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We do not need D to have CM-AM pairs

- Theorem 2 (Gallagher and Eddy, 2019a). Any CM with M states has an equivalent AM
pair with M states and homogeneous agent interactions, in terms of numbers of
individuals in each state at each time.

- Result 3. Each AM has an equivalent CM pair provided we adjust the number of total
states K*, in terms of numbers of individuals in each state at each time. provided we
adjust the number of total states K*

- M - number of disease level states. (e.g. SIR = M=3)
- N - number of individuals/agents
- K* = MN

- Implication: M < K* < MN

Takeaway: Finding an equivalent CM-AM pair means finding K*, the number
of states needed to model the outbreak



Implications of CM-AM pairs

As a result of our CM-AM pairs, we suggest the following modeling workflow:



Implications of CM-AM pairs

As a result of our CM-AM pairs, we suggest the following modeling workflow:

1. Estimate K* in the CM-view

- Select best model with K* total states
- Estimate parameters for model

2. Analyze scenarios in AM-view



Estimate K* for SIR




Gallagher and Eddy 2019b develop methods to ...

1. Visualize the SIR in a linear-regression framework

2. View all three states simultaneously with a ternary plot

3. Quantify how far “similar” agent-interaction structures are in terms of summary
statistics



We turn ternary plots into a model diagnostic

- St+Ilt+R =N = (S, 1, R;) lay in a constrained plane
- Used in Safan 2006 to visualize theoretical equilibria

- We extend the plot to include observations, estimates, confidence regions, and time



Example: Classic SIR - Two S groups

Picture of model with Binomial draws: Simulation observations
B, =0.80; B, = 0.30; y=0.20
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Example: Classic SIR - Two S groups

Picture of model with Binomial draws:
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Example: Classic SIR - Two S groups

Simulation observations
B, =0.80; B2 = 0.30; y=10.20
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Example: Classic SIR - Two S groups

Simulation observations

B, = 0.80; B, = 0.30; y= 020 Simulation observations
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Example: Classic SIR - Two S groups

Simulation observations
B, = 0.80; B, = 0.30; y = 0.20
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Example: Classic SIR - Two Susceptible groups

Obs. and ests. with 95% CR
B, =0.8;p,=03,y=0.2; =057 =0.2
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Example: Classic SIR - Two Susceptibl

Group 1 obs. and ests. with 95% CR Group 2 obs. and ests. with 95% CR
N N
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Example: Classic SIR - Two Susceptible groups

Takeaway:

- With all aspects in the ternary plot, we can assess our model

- Although this is restricted to SIR disease-level states, we can still look at groups of
individuals within these states

- There is a possible extension to visualizing the SEIR model in 3D
- E - "Exposed” state - already infected but not yet infectious

21



Measles!




About measles

+ Highly infectious childhood disease (Ro = 19)
(Anderson & May, 1992)

- Influenza Ro =~ 1.2

- Prodromes - initial symptoms
- high fever, cough, runny nose, red, watery eyes

MEASLES _—
[ e

- 2-3 days after, tiny white spots in mouth it — | \ )
- }
rash i & ,9 '-_: o
- Measles rash and high fever: 3-5 days after @T»/l —
eas ash a gh fever: ys afte e i:lig e MERSLES ViRUS

sym pto ms b eg| n respiratory tract e

- 2-3 days after rash, child recovers ' \ ) \ ‘M:‘

- CDC reports person is infectious &4 days after
rash appearance

- Lifelong immunity after infection 2



Measles: data from R surveillance package

ID Household Class Age Sex | R Infector
1 61 1st / F 22 29 45
2 61 1st 6 F 23 32 45
3 62 pre-K 4 F 29 37 NA
4 63 2nd 13 M 27 32 180
5 63 1st 8 F 22 31 45
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Measles: SIR curve of outbreak

% of children

State of Children

Hagelloch, Germany 1861-1862
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Measles: questions about Hagelloch

- What is K*, the minimal number of states?
- What is the associated CM-AM pair?
- What is Rq?

- What would have happened...
- if we generally reduce the infectivity?

- if we isolate infectious individuals?

- if we shut down the school?

25



Measles: reducing the infectivity

Scenario 1

1. We have estimate(s) of 3, the infection parameter
2. Assume we can reduce infectivity to p - 3

3. How would outbreak have changed?
Analysis 1

1. Initialize our CM-AM pair with estimates
2. Vary p in our simulations

3. Analyze resulting outbreaks

26



Measles: reducing the infectivity results

Final size (%)

120+

80+

40+

Hagelloch AM simulation results

From t=0 onward

Best fit model
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20 30 40 50
Peak % infectious over all days

g _

025 050 075 1.00
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Measles: case study summary (see Chs. 6-7)

- What is K*, the minimal number of states?
- K*=6
- What is Rq?
- Between 4-5.
- What is the associated CM-AM pair?
- SI*R* with groups before and after t = 25
- What would have happened...
- if we reduced the infectivity of the disease?
- Want to reduce B by about half
- if we isolated infectious individuals?
- Reduce size of epidemic, even if isolated 8 days after initial infection
- if we shut down the school?
- Inconclusive results due to assumptions of model

28



Conclusions
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2. Develop methodology for model selection

3. Apply methodology to measles case study
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We improve disease inference through CM-AM pairs

1. Statistically relate CMs and AMs v/

- CM-AM pairs with D, a pre-defined transition matrix
- General CM-AM pairs
- Importance of K*, minimum number of states

2. Develop methodology for model selection v
- log-linear plot
- ternary plot
- quantifying differences for similar agent-interaction structures

3. Apply methodology to measles case study v

- Model selection for observed data
© Ro = 4-5
- Examination of hypothetical scenarios

29



Dissertation and other work

- Ebola case study
- Western District, Sierra Leone 2014-2015
- 8,000+ cases
- Population of ~ 1.4 million
- SPEW synthetic agents (Gallagher et al. 2018)
- Focus on sensitivity to initial conditions
- Importance of N, the effective population size
- catalyst - R package with code for all my dissertation work
- SPEW and associated R package spew (Richardson et al,, 2018)
- “Nine ways to estimate R, in the SIR model” (Gallagher et al. In prep.)

- “Opening up the court (surface) in tennis” (Gallagher et al. In revision) %



- What is the bias-variance trade-off for choosing a smaller (larger) K*?
- How can we incorporate N as a random variable?

- Explore implementation of different vaccine trials in CM-AM pairs

31



Hagelloch, Germany 1861 & Pittsburgh, PA 2019

What links the two?
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Hagelloch, Germany 1861 & Pittsburgh, PA 2019

What links the two?

Measles

32



Thank you.

Questions?



Hagelloch physical locations
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Infection map of Hagelloch, Germany 1861
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Measles: isolation

Scenario 2

1. We have bet fit estimates for our selected model
2. Isolate infectious individuals after delay period d

3. How would outbreak have changed?
Analysis 2

1. Initialize our CM-AM pair with estimates
2. Vary d in our simulations

3. Analyze resulting outbreaks
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Measles: isolation

Isolation results of Hagelloch
Isolation to household
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Measles: school closure

Scenario 3

1. We have bet fit estimates for our selected model
2. Close school after closure threshold Cs is met

3. How would outbreak have changed?
Analysis 3

1. Initialize our CM-AM pair with estimates
2. Vary Cs in our simulations

3. Analyze resulting outbreaks

37



Measles: school closure

School closure results of Hagelloch children
School closure results
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Measles: model selection

- Used EDA, basic
clustering to find
potential groups

-+ Fit SIR models with
maximum
log-likelihood

- Used MSE, AIC, and
novel plots to assess
fit

- Selected two models
with two groups of
agents

Individual parameter estimates
With 2D density estimate
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Measles: model selection

Observed data and fitted models

- Used EDA, basic

clustering to find Type
; 100
potential groups _ Observed
iy — Model 7
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maximum % Model 11
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Data
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with two groups of
agents

39



Measles: model selection

- Used EDA, basic
clustering to find
potential groups

-+ Fit SIR models with
maximum
log-likelihood

- Used MSE, AIC, and
novel plots to assess
fit

- Selected two models
with two groups of
agents

50

% of individuals

Hagelloch estimates and 95% CI

0 20 40
Time

Model Avg. — 9 1
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Measles: the reproduction number R,

Previous estimates:

- Ro = 17-19 (Anderson and May 1992)
- Ry = 6-7 (Getz 2016)

Our estimate(s):

Model # Groups Interaction Partition RE)]) 95% Cl Réz) 95% Cl
1 1 Homogeneous 494 [4.68,5.21]
2 2 Homogeneous  tl > 25 417 [3.89,457] 249 [2.37,2.62]

3 2 Heterogeneous t/ > 25 3.13 [2.84,3.41] 435 [4.23,4.48]
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Measles: the reproduction number R,

Takeaways:

* Ro~ 45
- Difference in infectivity before and after day t = 25

- Which group is more infectious depends on our assumptions of interaction
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Ebola in Western District, Sierra Leon

Imputed 2014-2015 Ebola infection locations

Western District, Sierra Leone
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Ebola in Western District, Sierra Leone

Reported Ebola cases
Western Urban and Western Rural Sierra Leone
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Ebola in Western District, Sierra Leon

2014-2015 Ebola outbreak and best fit SIR model (by MSE)
B=0.16;y=0.12; N = 18758
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