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Abstract

Infectious diseases threaten the well-being of society through direct infection of
individuals and billions of dollars in collateral damage. As a consequence, statistical
modelling of infectious disease plays a critical role in answering important questions
about prediction and inference, and additionally, contingency planning. Compartment
models (CMs) and agent-based models (AMs) are two common frameworks to disease
modelling. Despite the differences between equation-based CMs and simulation-based
AMs, researchers have noted substantial similarities between the two frameworks. We
intend to combine the two into a “hybrid” framework. We focus on reconciling the
statistical differences between CMs and AMs. Specifically, we study a well-known
disease framework, Susceptible-Infectious-Recovered, with both a CM-based and AM-
based framework. We develop and prove conditions under which these two frameworks
have identical statistical behavior. We then extend this equivalence to a large class of
CM-AM pairs, which allows for a basis of comparison. Additionally, we examine the
relationship between the number of agents and the number of runs in the SIR-AM,
which allows for improved computational performance via parallelization. For future
work, we propose to extend our current work to all valid compartment models. This
will include the development of statistical tests to compare two models to one another
in order to measure the differences between them. We will also introduce practical,
statistical methods to speed up AM computation time. Finally, we will examine the
number of agents required to obtain adequate results to create a statistically justified
hybrid model that will simulate a global epidemic.

1 Introduction

Infectious diseases are relevant to modern society. Diseases such as smallpox, polio, and
influenza have infected millions of people and induced billions of dollars spent fighting
the diseases (Hethcote, 2000). Different generations have recollections of anxieties
about polio, HIV, swine flu, and more. Other diseases such as Dengue, Ebola, and
Zika have only recently posed threats to the well-being of society (Chan, 2014; Roth
et al., 2014; Oliveira Melo et al., 2016). Infectious diseases need to be studied and
combated, but the difficulty is in choosing how to do just that.
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Two common frameworks used to examine the spread and containment of infectious
disease are compartment models (CMs) and agent-based models (AMs). CMs have a
long, rich history in epidemiology, whereas AMs represent more recent computer-based
methods. CMs and AMs are used to ask and answer the same questions including the
typical statistical goals of prediction (e.g. how bad is the flu going to be this year and
when?) and inference (e.g. do travel patterns have any effect on the spread of Ebola?).
However, as even the possibility of an outbreak is quite serious, CMs and AMs are
often used to ask a question less seen in statistics, that is, “what-if” scenarios. What if
the state issues a travel ban? What if we inoculate the most social individuals within a
population? What if everything goes wrong? Investigating prevention strategies such
as quarantine and vaccination are important issues in both frameworks. As such, CMs
and AMs are tasked to answer important questions which makes deciding between the
two all the more important.

Upon first inspection, CMs and AMs seem quite different. CMs are equation-
based models that rely on strict assumptions about homogeneity, whereas AMs are
simulation-based with heterogeneous agents. Conversely, CMs are expected to run fast
whereas AMs may take weeks to run on a computer.

However, researchers have begun to realize that these frameworks are much closer
than initially thought. CMs may become quite complex if we partition the population
into homogeneous sub-populations, and many AMs combine agents into homogeneous
groups to reduce computational time. As some CMs require simultaneous solving of
large systems of differential equations, some AMs can run faster than CMs.

As the similarities between CMs and AMs became apparent, researchers began to
build hybrid models, which attempted to leverage the advantages of the two while
minimizing their disadvantages. However, most of these approaches are ad hoc and
rarely, if ever, take statistical details such as variance and probability distributions
into account.

We examine a well-known epidemic framework, the SIR model, where Susceptible
individuals may become infectious and Infectious individuals may become Recovered,
in both CM and AM-based frameworks. Specifically, we describe two stochastic models,
one from each framework, where the number of individuals in each compartment for
each time step, are not only “similar” but equivalent in distribution. We also extend
this equivalence to more general CM-AM pairs. This equivalence serves as a basis
from which we can then measure how CMs and AMs diverge from one another. We
show that by fitting the original SIR model to both frameworks, we obtain the same
distribution of epidemic parameters, a concept that may be generalized to test whether
an AM and CM or an AM and another AM are similar to one another.

Additionally, we examine the model variance of the two SIR models in question
and show that they scale in such a way that the number of agents may be replaced
by running the model more times. By decreasing the number of agents and increasing
the number of runs, we can improve the total computational time as runs may be
parallelized without changing the variance.

We further propose to extend our current work to all deterministic CMs. We will
develop statistical tests to determine whether CM-AM pairs or AM-AM pairs are the
same in terms of compartment sizes. We will also closely examine the number of agents
and number of run trade-off under different assumptions of homogeneity. Ultimately,
we will use these concepts to build a statistically justified CM-AM hybrid that switches
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seamlessly between the two types of frameworks. We will create software for this hybrid
model, testing on a large-scale epidemic.

The rest of this document is organized as follows. In Section 2, we describe CMs,
AMs, and their uses; explain what work has been done in comparing the two sets of
models; and discuss hybrid models that have been attempted. In Section 3, we describe
our current work done with the SIR model along with extensions to more general AM-
CM pairs. Finally, in Section 4, we develop specific next steps to continue our research.
Additionally, in the Appendix A we give simulation results of the results discussed.

2 Previous work

We briefly detail the history of CMs, AMs, comparisons of the two frameworks, and
finally combinations of the two in what are known as hybrid models.

2.1 Compartment models

CMs describe the transition of objects among discrete compartments over time. In
infectious disease epidemiology, these compartments reside within the Susceptible-
Infectious (SI) framework to describe how a disease moves through a population. Per-
haps the most well known CM is the SIR model, introduced by Kermack and McK-
endrick (1927), which stands for susceptible, infectious, and recovered, respectively.
Since then, more compartments have been added (or removed) to provide a wide class
of models to describe the evolution of objects within the SI-framework. Many such
examples are found in Daley et al. (2001).

Anderson and May (1992) identify two important assumptions in CMs: homogene-
ity and the law of mass action. The first assumption is the idea that all objects in a
particular state or compartment will behave in the same manner. The second is a prop-
erty borrowed from chemistry which says that the mass of the product of reactants is
proportional to the mass of the reactants, or in terms of infectious disease compartment
models, the rate of change of individuals in a compartment at the next time step is
proportional to the number of individuals in the compartment at the current time step.
While the law of mass action is often used in AMs, the assumption of homogeneity is
highly controversial.

Compartment models within the SI framework can be as simple the SI model or
can be made quite complex. For instance, the CM described by Pandey et al. (2014)
has 26 compartments! Other common CMs include MSEIR, MSEIRS, SEIR, SEIRS,
SIR, SIRS, SEI, SEIS, SI, and SIS, where M stands for passive infant immunity and E
for exposed but not yet infectious (Hethcote, 2000). CMs have been used to model a
plethora of diseases including plague, HIV, influenza, Ebola, and more (Kermack and
McKendrick, 1927; Anderson and May, 1992; Mills et al., 2004; Althaus, 2014).

Stochastic versions of compartment models have also been studied as to better fit
actual data. Some of the first stochastic versions arise from the Reed-Frost framework
(Abbey, 1952), which assumed that the number of infected individuals in the next
generation was distributed from a Binomial with a certain probability and the current
amount of susceptibles. These became known as chain Binomials as they could be
recursively computed. Becker (1981) generalized chain Binomials by allowing a flexible
probability of transition between generations. The idea of the next step’s number of
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infections being dependent only on the current state naturally lead to Markov mod-
els. These Markov models have been thoroughly examined (Jacquez and O’Neill, 1991;
Allen and Burgin, 2000; Daley et al., 2001). Gani and Yakowitz (1995) describe how
to create confidence interval bounds for deterministic approximations of random pro-
cesses. Bayesian approaches have also been attempted such as the one described in
Fintzi et al. (2017). Researchers such as Figueredo et al. (2014) and Banos et al. (2015)
use the Gillespie (1976) algorithm to create stochastic versions of common compart-
ment models. The Gillespie algorithm is a form of Monte Carlo sampling that samples
events at a random time τ in which an infectious (susceptible) agent has a chance to
recover (or become infectious) in such a manner that the underlying CM average shape
is maintained. These methods are especially useful in the context of epidemiology as
monotonicity is respected in both the number of susceptibles and the number of recov-
ered. For both methods, the magnitude of the error is closely related to the step size
of the calculations, with smaller time intervals meaning smaller variance. In general,
stochastic versions of CMs maintain the underlying shape of the deterministic CM but
may vary wildly in variance or distribution.

Although CMs are aggregate models, work has been done to incorporate spatial
information. Coupled CMs are the idea of running a single, unique CM for each region
but allowing for migration among regions. These models allow for more heterogeneity
but also require fitting a large number of parameters. Examples of these include the
coupled SIR model of Rvachev and Longini (1985) which allows for migration among
52 cities across the world and more recent examples of metapopulation, which are
discussed more below.

2.2 Agent-based models

Falling under the broader class of “simulations,” agent-based models (AMs) are used to
simulate autonomous agents and their interactions within a constrained environment
over time and are described as a “generative” mode of science (Epstein, 2007).

Two of the first AMs date back to the 1970s with Conway’s Game of Life as de-
scribed in Adamatzky (2010) and the segregation of communities of Schelling (1971).
These AMs, upon inspection, are quite similar, and contain all the important aspects of
what we would expect to find in an AM. In both these models, the environment is split
into a lattice and agents occupy cells within this lattice. In Conway’s Game of Life,
an agent may either have a value of dead or alive and in Schelling’s segregation model,
agents are either one of two races or a “null” state. In both these models, an agent’s
future state is determined by its present state along with the present state of the other
agents, in particular, their direct neighbors. This is known as “cellular automata.” The
major difference in these two models is that of deterministic vs. stochastic interactions.
In Conway’s Game of Life, the states of agents in an AM are completely determined
given their initial state. On the other hand, Schelling’s model incorporates a stochastic
process, where agents move to another state based on a (literal) flip of a coin. Because
of this, the concept of running multiple instances of a particular AM with given initial
parameters is important, as different random draws produce different results. Through
this stochastic process, variability is introduced into the model.

As computers became more powerful and more accessible, AMs became an option
as a “new kind of science” (Wolfram, 2002), neither an inductive nor deductive mode.
The AM, Transportation Analysis Simulation System (TRANSIMS) from Los Alamos
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National Laboratory is a foundational work in this field. TRANSIMS is the first,
large-scale, data-driven AM of its kind, meaning the agents are based on actual U.S.
citizens from data from the U.S. Census including demographic characteristics such as
race and age. Additionally, the agents include activity information such as commute
time and occupation type. The goal of TRANSIMS is to examine the “transportation
infrastructure effect on the quality of life, productivity, and economy” (Smith et al.,
1995).

TRANSIMS has agents with both individual and household characteristics; envi-
ronments with roads, workplaces, and households; and activity assignments which have
been assigned probabilistically to the agents and activities through a “route planner.”
Smith et al. (1995) note that all models within TRANSIMS are probabilistic, but the
program overall takes more of a results-oriented approach rather than examining the
variation within the model. TRANSIMS builds on the celluar automata framework by
dividing a region into a grid to have a large number of agents evolve in a (relatively)
small amount of computational time. TRANSIMS is still in use and is available today.
Moreover, its influence can be found in its successors such as MATSims and EpiSims
(Waraich et al., 2009; Eubank et al., 2004), the former which continues the goal of
examining traffic patterns whereas the latter examines the spread of disease with an
AM framework.

In the field of infectious disease epidemiology, AMs, sometimes called Individual
Level Models (ILMs), as agent often has another meaning in this field, are typically used
to model the spread of infectious disease (Longini et al., 2004; Grefenstette et al., 2013).
AMs in this field have been used for prediction, inference, and study of hypothetical
prevention strategies (Eubank et al., 2010; Bajardi et al., 2011; Liu et al., 2015; Wang
et al., 2016). Typically in these models, agents are assumed to be non-random as are
the environments, with the only variation arising through transference of a disease
through activities of agents. Generally, variance is reported through simulation results
accumulated by running the model hundreds of times, if at all.

AMs are a step away from the homogeneity of CMs as agents may be quite di-
verse. Although a CM may include heterogeneous information by adding numerous
compartments, such as through a model of AIDS posited by Anderson et al. (1986), it
is typically very tedious to do so. As such, AMs allow for an easier way to incorporate
heterogeneity into a model.

A popular representation for AMs is that of a network or graph-based framework.
In this framework, the agent states (e.g. susceptible, infectious, recovered) are node
colorings or labels and the directed edges are conditional probabilities of evolution of
states. The graph then updates at each time step based on current states and edge
weights. However, the graph-based approach is not exclusive to AMs as CMs are often
described in this manner.

Some researchers closely utilize the structure of the graphs. For instance, Liu et al.
(2015) examine the property of “hubs,” those individuals with many contacts, and
examine whether vaccinating these hubs alone is enough to curb the full effect of an
outbreak of a disease. Scheffer et al. (1995) examine the concept of “super individuals”
which simply represent multiple agents of a certain group or class. In this way, Scheffer
et al. can drastically reduce the number of nodes in the graph and correspondingly
speed up computational performance. However, the details of condensing agents into
a similar group have not been thoroughly examined from a statistical perspective.
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Although AMs have been used widely in fields such as ecology, sociology, epidemi-
ology and more, their statistical properties remain largely unstudied. The most im-
portant work done with AMs with regards to statistics is found in Hooten and Wikle
(2010), and we adapt their notation of AMs here. That work, however, focuses on
modelling the underlying probability of evolving from one state to another rather than
the statistical properties of the AM.

To summarize, the shortcomings AMs are two-fold 1) aligning the model to real-
ity and 2) computational time. Wallentin and Neuwirth (2017) describe this as the
computational-predictive trade-off.

2.3 Comparing CMs and AMs

Similarities between CMs and AMs have been noted by many researchers, but relatively
few papers have been written about these comparisons. Axtell et al. (1996) write
that AMs must be aligned or “docked” to their underlying model, often empirically
so the two approaches may be compared. Rahmandad and Sterman (2008) compare
deterministic CMs and their AM equivalents, specifically that of the SEIR model.
They find that using a fully connected network of agents, results of the two were quite
similar although not exact. Other network structures such as small world and ring
lattice produce markedly different results. Additionally, Rahmandad and Sterman find
that population size has little effect on their results.

Figueredo et al. (2014) compare established AMs with their stochastic-version CMs,
produced by the Gillespie method. They compare the two methods in three case studies
relating to cancer by fitting mixed effect models and comparing the results. They find
that although the two models may look similar, they result in different distributions.

The conclusion from these studies, in general, is that CMs and AMs often produce
similar results, but AMs may produce extra results due to being able to track individu-
als throughout time. Many studies reveal that AMs and CMs sometimes act the same
and sometimes differently. Moreover, although researchers seem to value variability in
their simulations, they typically only analyze the mean (Edwards et al., 2003; Chen
et al., 2004; Vincenot et al., 2011).

2.4 Hybrid models

Some modellers attempt to leverage the advantages of both CMs and AMs by combining
them into hybrid models. Analyzing global versus local effects, Fahse et al. (1998)
decompose the system into two different time scales where one feature evolves more
rapidly than the second. From this, they are able to extract global parameters from
the AM. Continuing the global versus local effects, Nguyen et al. (2008) examine two
“patches” of an environment. Also in ecology, Wallentin and Neuwirth (2017) examine
switching between equation-based models and AMs in a predator-prey model in order
to examine the computational-predictive trade-off. The conclusion is that they obtain
different results from different models but that AMs can indeed be useful in terms of
computational and predictive performance.

Bobashev et al. (2007) create a hybrid model, based on the SEIR model. Their
model uses homogeneous agents to better demonstrate the relationship between CMs
and AMs. This hybrid model utilizes an AM when under a certain number of infected
individuals and then switches to CM when the number of infected is large. Their idea
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is that when the number of infected is large enough, the outbreak is stable enough to
model through CMs, an idea also related by Jaffry and Treur (2008). This threshold is
heuristically determined. The intuition is that heterogeneous effects are most important
at the beginning and end of an outbreak and hence need a more detailed model at those
times.

Banos et al. (2015) create a hybrid model, which they describe as a metapopula-
tion model, that uses a SIR model within cities and agents traveling between them.
Hanski (1998) describes metapopulation as the technique of reducing individuals and
their ecosystem into a network structure. In this way, individuals grouped in a simi-
lar environment are assumed to behave the same way, yet migration is often allowed
among the sub-populations. Banos et al. (2015) compare this hybrid model to a cou-
pled SIR model in cities with instantaneous travel of agents and find that although
results are similar when looking at aggregate totals of individuals, the models diverge
when prevention strategies such as quarantine and avoidance are applied. The idea of
metapopulation hybrid models is also explored in Bajardi et al. (2011), which studies
the spread of the 2009 H1N1 pandemic. Here, a SEIR-like model is implemented within
countries and individuals are able to travel among them, thus allowing them to analyze
prevention strategies such as travel bans.

The idea of hybrid models is generally well-received but the details, statistical and
otherwise, on how to create such a model are currently lacking.

3 Current work: the SIR framework

In this section, we examine the relationship between CMs and AMs within the context
of the SIR framework. After describing the SIR model, we present two stochastic
versions: a CM and AM. We show that these models are very similar, and in some
ways, exactly the same. We then extend this equivalence to general CM-AM pairs.

In the SIR model, individuals are partitioned into one of three groups, susceptible,
infectious, or recovered. Susceptible individuals may become infectious and infected
individuals may become recovered over time. Both CMs and AMs may arise from the
SIR framework, depending on what assumptions are made about the transitions.

3.1 SIR: the CM approach

The deterministic CM of the SIR framework dates back to the work of Kermack and
McKendrick (1927). Their model follows the CM framework by assuming homogeneity
of individuals within compartments and by describing the transitions between com-
partments through a set of equations. For a fixed population N and a given unit of
time, the time to infection is expected to be β−1, and the recovery time of infected
individuals is expected to be γ−1. Thus, if the initial number of individuals in each
compartment is known (S(0), I(0), R(0)), then the entire model is specified through β
and γ ∈ (0, 1]. This is expressed by the following set of difference equations shown in
Equation (1),
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
∆S
∆t = −βIS

N
∆I
∆t = βIS

N − γI
∆R
∆t = γI

. (1)

Notably, in this model both S(t) and R(t) are monotonic functions where S(t) is non-
increasing and R(t) is non-decreasing. No such restriction is placed on I(t).

Typically, the SIR-CM is treated as deterministic, but random movement among
compartments may be incorporated. Denote Ŝ(t), Î(t), and R̂(t) to be the observed
number in each compartment and S(t), I(t), and R(t) to be the true, underlying model
at time t. A reasonable model is given by the following:

Ŝ(t+ 1) = Ŝ(t)− st (2)

Î(t+ 1) = N − Ŝ(t+ 1)− R̂(t+ 1),

R̂(t+ 1) = R̂(t) + rt

with Ŝ(0), Î(0), and R̂(0) known. The random terms in Equation (2) are random
variables. Here we choose them to have the following distributions,

st ∼ Binomial

(
Ŝ(t),

βI(t)

N

)
(3)

rt ∼ Binomial
(
Î(t), γ

)
.

One reason that this model was chosen is that, on average, it follows the shape of the
original SIR model. Another reason why this model was chosen is due to monotonic
conditions placed on the S and R components, non-increasing and non-decreasing,
respectively.

3.2 SIR: the AM approach

We can also create an AM-model for the the SIR frameework. AMs include dynamic
agents an(t) for n = 1, 2, . . . N along with a forward operator which updates the state
of the agents from one step to the next. The variable of interest is the aggregate total of
the agents that belong to the compartment k, X̂k(t) for k = 1, 2, . . . ,K. The following
AM relies on an underlying, deterministic SIR-CM. Thus, we assume a fixed population
N that follows the underlying model S(t), I(t), and R(t) with known initial states S(0),
I(0), and R(0), respectively. The AM is initialized to match that of the underlying
SIR model, e.g X̂1(0) = S(0), X̂2(0) = I(0), and X̂3(0) = R(0). The forward operator
is dependent on the current compartment of the agent in question. An agent in a given
state has a probability to move to the next state based on the underlying SIR-CM,

an(t+ 1) =


an(t) + Bernoulli

(
βI(t)
N

)
if an(t) = 1

an(t) + Bernoulli (γ) if an(t) = 2
an(t) otherwise

. (4)

Here, compartments 1, 2, and 3 refer to the S, I, and R compartments, respectively.
Thus, Equation (4) fully describes an AM within the SIR framework.
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The variables of interest are the total number of agents in each compartment,
k ∈ {S, I,R} at each time step t ∈ {1, 2, . . . , T} and where I is the indicator function,

X̂k(t) =

N∑
n=1

I {an(t) = k} . (5)

Note the expected value of X̂k for each of the compartments is that of the respective
compartment in the underlying deterministic SIR model.

3.3 SIR: CM vs. AM

Many researchers have mentioned that sometimes AMs and CMs act the same and
sometimes differently, but we give conditions where not only the AM and CM’s expected
values match those of the underlying SIR model but also are the same in distribution
for the number of individuals in each compartment. The models chosen for the CM
described by Equations (2) and (3) and the AM in Equation (4) were chosen precisely
because under these conditions, these models are not only similar, but exactly the
same.

Theorem 1. Fix an underlying SIR model, S(t), I(t), and R(t) with known S(0), I(0),
and R(0). Let the CM be as in Equations (2) and (3) and the AM in Equation(4).
Then for all t ∈ {1, 2, . . . , T},(

Ŝ(t), Î(t), R̂(t)
)

d
=
(
X̂S(t), X̂I(t), X̂R(t)

)
(6)

Proof. The initial conditions are designed to be the same in each model. Noting that
the Binomial in the CM model can be thought of a sum of independent Bernoullis, the
claim subsequently follows.

3.4 Equivalent General CMs and AMs

The idea of equivalent CMs and AMs generalizes to other models besides the determin-
istic SIR model. We can create equivalent CM-AM pairs for any given deterministic
CM given by a series of difference equations, given the equations satisfy the law of
mass action (in order to specify valid probabilities). We first give the conditions for
the stochastic CM.

Let a deterministic CM with K discrete compartments be given by a series of K
difference equations,

∆XCM
k

∆t
=

K∑
i=1

Dik(t)−
K∑
j=1

Dkj(t)

along with a set of initial values. Here Dij(t) ≥ 0 represents the movement of individ-
uals from compartment i to compartment j from time t to t+ 1. The stochastic CM is
given by the following which includes Zij which represents the jth entry of vector Zi,

Zi ∼ Multinomial
(
X̂i, (pi1(t), . . . , piK(t))

)
for i = 1, 2, . . . ,K (7)

X̂CM
k (t+ 1) = X̂CM

k (t) +

K∑
i=1

Zi,k −
K∑
i=1

Zk,i for k = 1, 2, . . . ,K
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where pij(t) =
Dij(t)
Xi(t)

when i 6= j and pii(t) = 1 −
∑

k 6=i pik. In words, the random
variables Zi are multinomial draws where entry Zij is the number of individuals mov-
ing from compartment i to compartment j. Then the number of new individuals in
compartment k is equal to the old number plus the new individuals moving in and
minus individuals moving out.

Similarly, we can create a corresponding AM for this deterministic CM. Given the
correct initial values in each compartment, for an agent an(t), n = 1, 2, . . . , N , the
forward operator for t > 0 is

an(t+ 1) = j with probability pkj(t) if an(t) = k. (8)

That is, an agent currently in state k has probability pkj(t) of moving into state j. The
aggregate total in each compartment k is given by

X̂AM
k (t) =

N∑
n=1

I {an(t) = k} .

Then, these CM-AM pairs are equivalent.

Theorem 2. Fix an underlying deterministic CM with K compartments X1, X2, . . . , XK

with known initial values and differential (difference) equations. Let the stochastic CM
be as in Equation (7) and the AM in Equation (8). Then for all t ∈ {1, 2, . . . , T},(

X̂1(t), X̂2(t), . . . , X̂K

)CM d
=
(
X̂1(t), X̂2(t), . . . , X̂K(t)

)AM
(9)

Proof. The initial conditions are designed to be the same in each model. Noting that
the Multinomial draws in the CM model can be thought of a sum of independent
Multinomial draws of size 1, the claim subsequently follows.

3.5 Comparing models

AMs rarely fully consider statistics in their methods. For example, simulations are
run over entire populations rather than sub-samples. Thus one practical result of
considering statistics in AMs is the ability to substantially reduce computational time
through either running a CM instead of an AM or combining multiple AMs together.
We first need to be able to compare AMs to CMs and AMs to AMs in order to decide
when they are “similar enough.” One way to do this is to fit a deterministic SIR model
and compare the resulting estimated β̂ and γ̂ parameters from the different models.

Example 3.1 (SIR: AM & CM: simulations). We first simulate the stochastic SIR
model for both the SIR-CM and SIR-AM with N = 1000, β = .10 and γ = .03. We
then fit a deterministic SIR model to each of simulations. We do so by using the initial
conditions as in the observed model and jointly minimizing the number of susceptible
and infected (and thus the recovered),

L(β, γ) =
T∑
t=0

(Sobs(t)− S(t;β, γ))2 + (Iobs(t)− I(t;β, γ))2 . (10)

Repeating for 5000 draws from the CM and AM described previously, we obtain 5000
pairs of β and γ estimates, the results of which are plotted as a contour in Figure
1. Not surprisingly, the distributions of the pairs from the CM and AM seem to be
indistinguishable from one another.
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Figure 1: Contour plot of (β̂, γ̂) pairs from 5000 draws from SIR models fit to both the
CM (black) and AM (gray) draws described in Equations (2) and (3) and Equation (4),
respectively.
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3.6 Number of agents vs. number of runs

A key advantage to the AM framework is the ability to run a model with fixed initial
parameters a number of times. These runs are independent of one another, which
means the process can be completed in parallel. Thus, if we can determine the re-
lationship between the number of runs and the number of agents and their resulting
effects on the model, then we can improve computational time via parallelization with-
out compromising information about the variance or the distributions of the different
compartments.

Specifically, we want to look at the distribution of 1
L

∑
runs `

X̂k(t)
N , where it is im-

plicitly assumed that X̂k(t) may change with each run with L total runs. Clearly,

E

[
1

L

∑
runs `

X̂k(t)

N

]
= E

[
X̂k(t)

N

]

V

[
1

L

∑
runs `

X̂k(t)

N

]
=

1

LN2
V
[
X̂k(t)

]
,

and so the relationship between the number of agents and runs is dependent on how
X̂k(t), the total number of agents in state k at time t, varies as a function of N .

3.6.1 SIR-AM: the number of agents and runs in an AM

Let there be two SIR-AMs with X̂k1(t) and X̂k2(t) as the same compartment type (e.g.
S, I, or R) of an underlying, deterministic SIR-CM with parameters β and γ with total

population, N1 and N2, respectively and with initial values such that
X̂k1

(0)

N1
=

X̂k2
(0)

N2
.

That is, the only thing that is different between the two models is the population
size. These AMs follow the the form as described in Equation (4). First, note that
X̂k1

(t)

N1
=

X̂k2
(t)

N2
for all t. Then it follows that

E

[
1

L1

∑
runs `

X̂k1(t)

N1

]
= E

[
1

L2

∑
runs `

X̂k2(t)

N2

]
.

The variance and covariance are calculated for the SIR compartments using the law of
total covariance of the model described in Equation (2). They are, setting pt = βI(t)

N :

V
[
Ŝ(t+ 1)

]
=S(t)(1− pt)pt + (1− pt)2V

[
Ŝ(t)

]
(11)

V
[
Î(t+ 1)

]
=V [Ŝ(t+ 1)] + V [R̂(t+ 1)]− 2Cov[Ŝ(t+ 1), R̂(t+ 1)]

V
[
R̂(t+ 1)

]
=I(t)γ(1− γ) + (1− γ)2V

[
R̂(t)

]
+ γ2V [Ŝ(t)]

− 2γ(1− γ)Cov
(
Ŝ(t), R̂(t)

)
Cov

[
Ŝ(t+ 1), R̂(t+ 1)

]
=− γ(1− pt)V [Ŝ(t)] + (1− γ)(1− pt)Cov[Ŝ(t), R̂(t)].

As a result of Equation (11),

V [X̂k2(t)] =
N2

N1
V [X̂k1 ] for k ∈ {S, I,R}
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if V [X̂k1(0)] = V [Xk2(0)] = 0. This result lets us simply compare the variance of
SIR-AMs with different population sizes.

Assume we have SIR-AM 1 with N1 agents and L1 runs and known initial values
and SIR-AM 2 with N2 agents and L2 runs, both with given parameters β and γ. Ad-
ditionally, assume X̂k2(0) = N2

N1
X̂k1(0), that is, the initial values in each compartment

have the same proportion as the other AM. Then

V
[

1
L1

∑
runs `

X̂k(t)
N1

]
V

[
1
L2

∑
runs `

X̂k2
(t)

N2

] =
L2N

2
2

L1N2
1

· V [X̂k1(t)]

V [Xk2(t)]
(12)

=
L2N2

L1N1
.

If we set the variances equal to one another then L1N1 = L2N2. This result lets us
freely exchange runs with agents without changing the variance. Thus, by reducing
the number of agents and increasing the number of runs we can effectively improve the
effective computational time of the model without compromising information about
the variance. As an example, Figure 2 shows the variance of the compartment size
averaged over both the agents and the time steps for two separate simulations of the
SIR-AM. Simulation 1 consisted of N = 100 agents and L = 4 runs which were run
simultaneously over 4 cores. Simulation 2 consisted of N = 400 agents and L = 1 run.
Both sets of simulations were executed 100 times and their sample average variance
is plotted. We see the variance is approximately the same although simulation 1 took
3:30 minutes to run and simulation 2 took 4:05 minutes to run.

4 Next steps

Future work focuses on investigating when and how AMs and CMs diverge from one
another and the development statistical tests to verify the divergence. Ultimately, we
hope to construct a statistically justified hybrid model. Specifically, we will examine

• Extending current work to run on FRED. We will examine the concept
of creating increasingly diverse agents empirically using the existing AM FRED
(Grefenstette et al., 2013). FRED follows a SEIR framework but allows for flex-
ible parameter inputs. First, we will modify the SEIR equations to exclude the
“E” compartment and thus use the SIR framework. We will then first replicate
the results of this document, that is we will examine the spread of disease in a
completely homogeneous population. From there, we will begin to add hetero-
geneity to our agents. We will first partition our agents by splitting one agent
feature into two groups, which will make “parallel” SIR models and the previ-
ous results should still apply. We will then partition the agents on two features
with two groups for each feature. This will allow for heterogeneous mixing of the
agents. We will change the infectivity and recovery rates for the different groups
and examine how the disease spreads. In all these experiments, we will focus on
the statistical details such as variance and probability distributions in addition
to the mean results.

• Examination of foundational assumptions. In our proposal work, we created
AM-CM pairs using the assumption of independent agents. However, we know

13



0e+00

2e−04

4e−04

6e−04

0 25 50 75 100
TimeV

ar
ia

nc
e 

of
 ∑ l

Ŝ(
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Figure 2: Variance of the compartments for two simulations, both with β = .1 and γ = .03.
Simulation 1: N = 100 agents, L = 4 runs. Simulation 2: N = 400 agents, L = 1 run. Each
simulation was run 100 times. Simulation 1 ran for 3:30 minutes and simulation 2 for 4:05
minutes as simulation 1 was parallelized over 4 cores.
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this is a sufficient but not necessary condition, as we will show through using a
series of distinct groups of agents that are mutually independent. We would like
to further examine the fundamental assumptions of CMs and their corresponding
AMs including that of independence of agents, homogeneity of agents, and the
law of mass action. We would like to examine the conditions necessary for each
of these assumptions to create equivalent AM-CM pairs. Additionally, a simple
parameter to change in our equivalent AM-CM pairs is the probability of transi-
tion from compartment i to j from time t to t+ 1, pij(t),. It would be interesting
to examine the effect pt has on the variance of the resulting model under different
assumptions, such as a Beta prior.

• Statistical tests to compare AMs to CMs. We would like to form tests to
decide when it is justified to switch from an AM to a CM. Points to consider
are when in time a switch is justified, what is the effect on the variance, how
do we obtain parameters for the CM, and whether prevention strategies will be
effected and how so. This is the first step in creating a statistically justified
hybrid model. We will first compare fitted epidemiological parameters such as β
and γ using statistical tests to differentiate AMs from one another. From there,
we will explore higher dimensional summary statistics. We will explore statistical
properties of similarity scores used to quantitatively compare AMs and CMs.

• Examination of methods on real data. We will run our methods on real
infectious disease data such as the recent Ebola outbreak in Western Africa or
possibly another disease. We examine CMs and AMs in this setting and whether
the resulting fitted β̂ and γ̂ parameters are effected in each model.

• Software for a hybrid model. We will demonstrate a hybrid model computa-
tionally with focus on disease applications. We will introduce a global epidemic
to the populations of Synthetic Populations and Ecosystems of the World (Gal-
lagher et al., 2017), which will apply a more AM-based approach in more detailed
and thus heterogeneous synthetic ecosystems such as the United States and more
of a CM-based framework in less detailed synthetic ecosystems.
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A Simulation Results

Example A.1 (Equivalent SIR CM & AM: simulations). The CM is drawn from the
model in Equations (2) and (3) and the AM as in Equation (4). In the underlying SIR
model, β = 0.10 and γ = 0.03 and N = 1000 with S(0) = 950, I(0) = 50 and R(0) = 0,
and draw 1000 instances from both the CM and the AM.

The results are displayed in Figures 3-4. From Figure 3, we see that the draws
overlaid on one another for both the AM and the CM seem to have the same shape
which is indicative of having the same distribution for the observed S, I, and R curves.
In Figure 4, the average value at each time point for the observed S, I , and R curves
are plotted for both the AM and CM. There is no distinguishable difference between
the two sets of curves, indicating that the mean values for each time point and curve
are equal.

19



Figure 3: 100 draws from the CM (left) and AM (right) for the observed S, I, and R curves
described in Equations (2) and (3) and Equation(4), respectively.
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