FROM FORECASTING THE FLU TO PREDICTING THE "NEXT" DISEASE UP-STAT 2016 - Buffalo, NY

Shannon Gallagher

April 23, 2016

Carnegie Mellon University Department of Statistics Lee Richardson Sam Ventura Ryan Tibshirani Bill Eddy Department of Machine Learning Roni Rosenfeld

WE WANT TO BETTER PREDICT OF THE SPREAD OF INFECTIOUS DISEASES

Infectious diseases are often ...

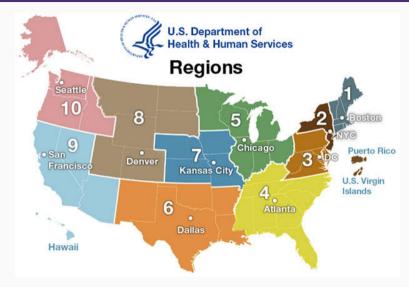
- \cdot old
- \cdot deadly
- \cdot costly
- stochastic

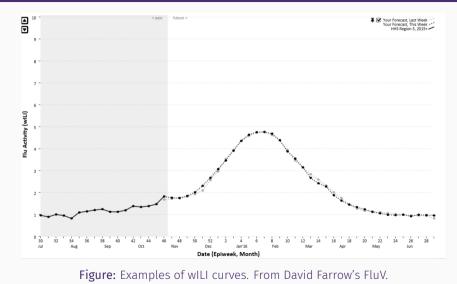
With accurate predictions, the infectious diseases are

- · old
- $\cdot \ -\text{deadly} \rightarrow \text{manageable}$
 - · Resource allocation
 - $\cdot\,$ Alert health officials
 - Issue warnings
- $\cdot \ \ \textbf{costly} \rightarrow \textbf{feasible}$
 - · Fewer sick days
 - · More awareness
- $\cdot \ \underline{\mathsf{-stochastic}} \to \mathsf{forecasted}$

PREDICTING THE FLU

WE FOCUS ON 10 CDC REGIONS




Figure: From cdc.gov

THE CDC COLLECTS DATA FROM PHYSICIANS VOLUNTARILY

Region	Year	Week	wILI
1	2015	25	0.55
2	2015	25	1.45
:	:	:	:
10	2015	25	0.44
:	:	:	:
1	2015	45	0.76
2	2015	45	1.57
:	:	:	:
10	2015	45	0.89

Table: Cross Section of Available data.wILI - Weighted Influenza Like Illness

WE WANT TO PREDICT THE WILI FOR THE REMAINING WEEKS OF A SEASON

epicast.org

$$Y_t^{(r,s)} \sim N(\mu_t^{(r,s)}, \sigma^2)$$

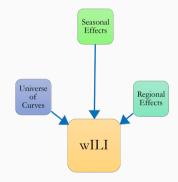
where

$$\mu_{t}^{(r,s)} = [a_{s} \cdot \alpha_{r}] \cdot f(t - b_{s} - \beta_{r})$$

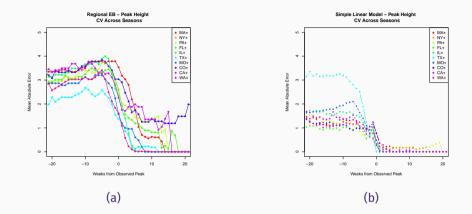
-seasonal scaling

-seasonal shifting

-regional scaling


-regional shifting

-variance


-smoothed observed curves

for week t, region r, season s and priors:

$$\begin{split} &a_{s} \sim \text{Unif}(2,10) \\ &b_{s} \sim \text{Unif}\{-6,-5,\ldots,6\} \\ &\alpha_{r} \sim \text{Unif}(0.25,1.25) \\ &\beta_{r} \sim \text{Unif}\{-3,-2,\ldots,3\} \\ &f \sim \text{Unif}\{\hat{F}\} \\ &\sigma^{2} \sim \text{Unif}(0.5,2.5) \end{split}$$

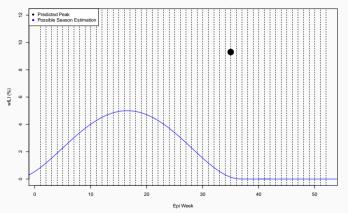

ESTIMATING A POINT IS SIMPLER THAN ESTIMATING A CURVE

Figure: Leave-one-season-out cross validation for EB with regional effects (a) and a targetted regression (b). The x-axis is the weeks from the observed peak and the y-axis is the mean absolute error.

ULTIMATELY, WE WANT TO BIAS ESTIMATES/SHRINK POSTERIOR

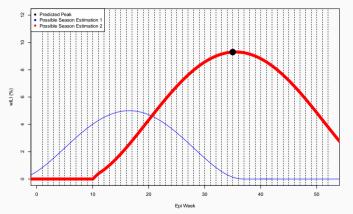
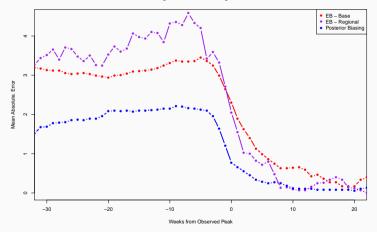

Visualization of Posterior Biasing

Figure: Image depicting of weighting curves whose peak values are closer to our estimated values. A thicker line represents a larger weight. The black dot is our estimated value of the peak height and week.


ULTIMATELY, WE WANT TO BIAS ESTIMATES/SHRINK POSTERIOR

Visualization of Posterior Biasing

Figure: Image depicting of weighting curves whose peak values are closer to our estimated values. A thicker line represents a larger weight. The black dot is our estimated value of the peak height and week.

POSTERIOR BIASING YIELDS IMPROVED RESULTS

Height Predictions Average Error

Figure: Cross Validation error averaged over the different seasons for the different model types.

THE "NEXT" DISEASE

For past diseases like the flu, we have

- $\cdot\,$ Years of data
- $\cdot\,$ Knowledge of the disease
- · Public awareness
- · Specific models


For past diseases like the flu, we have

- $\cdot\,$ Years of data
- $\cdot\,$ Knowledge of the disease
- · Public awareness
- · Specific models

But for <u>new</u> diseases we have

- \cdot Little data
- · Less knowledge
- · Frenzied awareness
- $\cdot\,$ Few, if any, models

```
for (time in time steps)
   agents = update(agents, env)
end
```



```
for (time in time steps)
    agents = update(agents, env)
end
```


ABMs are flexible and modular!

An ABM can incorporate:

- · Transmission Type
- · Reproduction Rate
- \cdot Cultural factors
- · Prevention strategies

ABMS REQUIRE HIGH QUALITY AGENTS - SPEW

Figure: Synthetic Populations and Ecosystems of the World

- $\cdot ~\sim$ 4 billion agents
- \cdot 80+ countries
- · Automatic diagnostic reports
- · 2 custom populations from users
 - · Canada (Data from CDs)
 - · California (Hispanic Population)
- · 2 location sampling modules
 - · Uniform and Road-Based
- · 4 sampling schemes
 - Uniform, Moment Matching, IPF, Density Estimation
- · Open Source
 - https://github.com/leerichardson/spew

IN SUMMARY

• When we have data, we can build rich models (Flu)

· Agent-Based Modeling can be used to simulate diseases previously unseen

QUESTIONS?