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We want to better predict of the spread of
infectious diseases
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infectious diseases are destructive

Infectious diseases are often ...

∙ old

∙ deadly

∙ costly

∙ stochastic
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we want to mitigate the effects of disease through prediction

With accurate predictions, the infectious diseases are

∙ old
∙ deadly → manageable

∙ Resource allocation
∙ Alert health officials
∙ Issue warnings

∙ costly → feasible
∙ Fewer sick days
∙ More awareness

∙ stochastic → forecasted
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..predicting the flu



we focus on 10 cdc regions

Figure: From cdc.gov
5

cdc.gov


the cdc collects data from physicians voluntarily

Region Year Week wILI
1 2015 25 0.55
2 2015 25 1.45
...

...
...

...
10 2015 25 0.44
...

...
...

...
1 2015 45 0.76
2 2015 45 1.57
...

...
...

...
10 2015 45 0.89

Table: Cross Section of Available data.
wILI - Weighted Influenza Like Illness
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we want to predict the wili for the remaining weeks of a season

Figure: Examples of wILI curves. From David Farrow’s FluV.
epicast.org
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epicast.org


the model relies on seasonal variables

Y(r,s)t ∼ N(µ(r,s)
t , σ2)

where

µ
(r,s)
t = [as · αr] · f(t− bs − βr)

for week t, region r, season s and priors:

as ∼ Unif(2, 10) -seasonal scaling
bs ∼ Unif{−6,−5, . . . , 6} -seasonal shifting
αr ∼ Unif(0.25, 1.25) -regional scaling
βr ∼ Unif{−3,−2, . . . , 3} -regional shifting
f ∼ Unif{F̂} -smoothed observed curves

σ2 ∼ Unif(0.5, 2.5) -variance
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estimating a point is simpler than estimating a curve
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(b)

Figure: Leave-one-season-out cross validation for EB with regional effects (a) and a targetted
regression (b). The x-axis is the weeks from the observed peak and the y-axis is the mean absolute
error.
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ultimately, we want to bias estimates/shrink posterior
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Figure: Image depicting of weighting curves whose peak values are closer to our estimated values.
A thicker line represents a larger weight. The black dot is our estimated value of the peak height
and week.

10



ultimately, we want to bias estimates/shrink posterior
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Figure: Image depicting of weighting curves whose peak values are closer to our estimated values.
A thicker line represents a larger weight. The black dot is our estimated value of the peak height
and week.
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posterior biasing yields improved results
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Figure: Cross Validation error averaged over the different seasons for the different model types.
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..the “next” disease



the tools we have for new diseases are limited

For past diseases like the flu, we have

∙ Years of data
∙ Knowledge of the disease
∙ Public awareness
∙ Specific models

But for new diseases we have

∙ Little data
∙ Less knowledge
∙ Frenzied awareness
∙ Few, if any, models
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agent-based models (abms) use agents, an environment, and update rules

for (time in time steps)
agents = update(agents, env)

end

ABMs are flexible and modular!
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possible solution: simulation via agent-based modeling

An ABM can incorporate:

∙ Transmission Type

∙ Reproduction Rate

∙ Cultural factors

∙ Prevention strategies
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abms require high quality agents - spew

Figure: Synthetic Populations
and Ecosystems of the World

∙ ∼ 4 billion agents
∙ 80+ countries
∙ Automatic diagnostic reports
∙ 2 custom populations from users

∙ Canada (Data from CDs)
∙ California (Hispanic Population)

∙ 2 location sampling modules
∙ Uniform and Road-Based

∙ 4 sampling schemes
∙ Uniform, Moment Matching, IPF, Density Estimation

∙ Open Source
∙ https://github.com/leerichardson/spew
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..in summary



we use the tools available to us

∙ When we have data, we can build rich models (Flu)

∙ Agent-Based Modeling can be used to simulate diseases previously unseen
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thank you

Questions?
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