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Abstract

Two common classes of models for infectious disease epidemiology are compartment models (CM) and agent-

based models (AM). Despite similarities being noted between the two classes, little has been written to

explicitly connect the two classes of models. This dissertation improves upon the statistical inference within

infectious disease models that belong to either the class of CM or AM. Specifically, we 1) theoeretically

relate CMs and AMs under both a common but stringent assumption of epidemic models and under more

general conditions, 2) develop and refine model selection methodology for models the susceptible-infectious

(SI) or susceptible-infectious-recovered (SIR) framework of epidemic models, and 3) apply our theory and

methodology to historic and modern outbreaks.

Chapters 2-3 examine the statistical relationship between CMs and AMs and study the essential features

of each, which include homogeneity of individuals within groups and homogeneous interaction between

susceptible and infectious individuals. We show that under a broad set of conditions, a CM has an equivalent

AM and an AM an equivalent CM, in terms of the number of individuals in each state at a given time. We

then discuss the importance of this theoretical relationship, especially with respect to the total number of

states required to adequately model an epidemic, which in turn determines the amount of heterogeneity of

interactions in our model.

Chapter 4 presents methodology for selection of the the total number of states required to adequately

model an epidemic for common epidemic models within the SI and SIR-framework. One method quantifies

the level of homogeneity of interaction among agents, and visual diagnostics are developed to assess the

model fit to observed data.

Finally, Chapters 5-9, comprehensively examine the statistical relationship and model selection method-

ology in two case studies: an outbreak of measles in Hagelloch, Germany (1861-1862), and an outbreak of

Ebola in Western District, Sierra Leone (2014-2015). For both case studies, we perform model selection

to determine the best fit CM-AM pair. We then use the selected CM-AM pair to simulate scenarios of

interest to policy makers. Examples include: the general infection reduction, isolation and quarantine,

school closure, sensitivity to initial conditions, and the importance of the value and interpretation of the
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effective population size. We find that the CM-AM pair is a useful tool to analyze past epidemics as well as

plan for future epidemics.
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of initially susceptible individuals of state Ŝ1(0) recover at a different time than the the group

of initially infectious individuals. Here, we set β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10.

Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) = (250, 500, 250, 0, 0). We run

both models 5000 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xvi



3.10 Left: CM simulation. Right: AM simulation. In the lock-step, stochastic S2IR2 CM and AM,
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of initially susceptible individuals of state Ŝ1(0) recover at a different time than the the group

of initially infectious individuals. Here, we set β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10.

Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) = (250, 500, 250, 0, 0). We run

both models 5000 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Two extreme CM depictions for a population of size N with three fixed disease-level states,

SIR. On the left, there is one state for each disease-level state for a total of K∗ = 3 states.

On the right, there is one disease-level state for each agent for a total of K∗ = 3N states. For

both models, we assume homogeneous mixing and homogeneity of individuals within states. . 46

3.12 Depiction of two different models within the disease-level states SIR. For the left model, there

are K = 3 total states. For the right model, there are K = 4 total states. . . . . . . . . . . . 47

4.1 Simulations of SIR-CM with best-fit line (red) from weighted linear regression and 95%

prediction interval from weighted least-squares linear regression. . . . . . . . . . . . . . . . . 51

4.2 Single simulation of SIR-CM with best fit line (blue) and 95% prediction interval from weighted

least-squares linear regression with the weights as the inverse of the plug-in estimate of Eq.

(4.3). The slope of the line is also the estimate of R0 = 3.40 . . . . . . . . . . . . . . . . . . . 53

4.3 Coverage of data for our L = 100 SIR-CM simulations for different values of β̂, which is used

to estimate the weights for weighted linear regression. . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Observed SIR data simulated from the model in Eq. (2.2) with β = 0.98 and γ = 0.35. Left:

% of individuals in state vs. time. Right: ternary plot of % in S, I, and R states. The point

in purple is highlighted to show how the same point is represented in both plots. . . . . . . . 55

4.5 Observed SIR data simulated from the model in Eq. (2.2) with β1 = 0.98 and γ1 = 0.35 and

a second set with β2 = 0.70 and γ2 = 0.25. Left: % of individuals in state vs. time. Right:

ternary plot of % in S, I, and R states. The black points are from set 1 and the purple points

from set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Observed SIR data simulated from a S2IR Binomial movement model with β1 = 0.8, β2 =

0.30, and γ = 0.20. Our estimate of the model is β̂1 = β̂2 = 0.5 and γ̂ = 0.2. Left: average

% of individuals in state vs. time as the line and the ribbon is the 95% pointwise marginal

confidence intervals. Right: average % in S, I, and R states and 95% pointwise confidence

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xvii



4.7 Observed SIR data simulated from a S2IR Binomial movement model with β1 = 0.8, β2 =

0.30, and γ = 0.20. Our estimate of the model is β̂1 = β̂2 = 0.5 and γ̂ = 0.2. We plot the

average % in S, I, and R states and 95% pointwise confidence regions for each of the two

groups using ternary plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Results from simulations of Eq. (4.4) with N = 100, ρ = 0.003, T = 50, and I(0) = 1. The

red horizontal line corresponds to the 95% coverage line, which is the amount of coverage we

expect given our 95% prediction intervals. The red vertical line corresponds to the value 0.03,

which is the value of the true recovery rate, γ, which is a point of equilibria in the K&M

deterministic SIR equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Example of a complete graph (left) and a “9/1” graph for N = 10 agents. . . . . . . . . . . . 62

4.10 Estimates of ρ̂ from simulating an SI outbreak from a complete agent network GC (left) and a

nearly complete agent network GNC (right). In both simulations, the initial infectious agent

is chosen uniformly at random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Current day satellite image of Hagelloch, Germany . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 The number of susceptible, infectious, and recovered children over time. . . . . . . . . . . . . 71

5.3 Grid of locations of infected households in Hagelloch colored by the school class of each child 72

5.4 Model fits for K∗ = 3 to the Hagelloch measles data. . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Model fits for K∗ = 3 to the Hagelloch measles data plotted in barycentric coordinates via

a ternary plot. The observed estimates are plotted as circles and the estimates are plotted

as triangles. Every 10th day is filled in with a different color in order to identify points that

occur at the same time. The different model estimates are plotted with different color lines. . 79

5.6 Model fits for K∗ = 3 to the Hagelloch measles data plotted in a log linear transformation. . 80

5.7 Weighted linear regression estimate for observed data with 95% point-wise prediction interval

for the observed Rt/N values. The slope of the line corresponds to R̂0, or roughly, 5.9. . . . . 81

5.8 Individual estimates of β̂n and γ̂n for each agent n = 1, . . . , 188 obtained by maximizing

L (βn, γn;X,Un). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Clustering of agents based on time of recorded infection. . . . . . . . . . . . . . . . . . . . . . 85

5.10 Ternary plot of the model estimates in Table 5.5. Every 10th day is filled in with the same

color to get a better sense of the time dimension of the epidemic. The observed values are

plotted as circles and the estimated values as triangles. . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Number of agents in each state vs. time, faceted by the aggregate S, I, and R states

respectively. The model estimates and their 95% point-wise CIs are shown along with the

original observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xviii



6.1 Top: day of peak infection and peak infectious. Bottom: final size and peak infectious. Results

of AM simulation and 95% CIs. One AM consists of two groups of agents who interact across

the groups (homogeneous) and the other does not interact across groups (heterogeneous).

Each AM was run 1000 times with β̂1 = ρ× 0.43, β̂2 = ρ× 0.23, γ̂1 = ρ× 0.10, γ̂2 = ρ× 0.09. . 95

6.2 Top: day of peak infection and peak infectious. Bottom: final size and peak infectious. Results

of AM simulation and 95% CIs. One AM consists of two groups of agents who interact across

the groups (homogeneous) and the other does not interact across groups (heterogeneous).

Each AM was run 1000 times with β̂1 = ρ× 0.43, β̂2 = ρ× 0.23, γ̂1 = ρ× 0.10, γ̂2 = ρ× 0.09. . 97

6.3 Hagelloch simulations with homogeneous agent interaction where we condition on the first

t − 1 data points and include a reduced infectivity parameter, ρβ̂k on day t. Each AM was

run 1000 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Simulation results of isolation and quarantine routines along with baseline simulations for

given estimated parameters from Chapter 5. Here, Each each AM was run 100 times with

β̂1 = 0.43, β̂2 = 0.23, γ̂1 = 0.10, γ̂2 = 0.09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 AM scenario of school closure for 1st and 2nd class of Hagelloch . . . . . . . . . . . . . . . . 108

8.1 Map of Western Urban and Western Rural, Sierra Leone. The North Western part consists

of Western Urban (where Freetown is) and the remainder is Western Rural. The population

density is plotted according to the synthetic agents produced by SPEW and supplemented

further here. The red dots represent imputed infection locations of Ebola between 2014-2015. 115

8.2 Stacked histogram of reported ages, grouped by final status. . . . . . . . . . . . . . . . . . . . 117

8.3 Ebola cases in Western Urban and Western Rural Provinces, Sierra Leone. We plot the

observed infection dates which have been imputed to SIR format where the recovery time is

the infection date plus a Poisson random draw with mean λ = 9. The susceptible population

is taken to be N = 1.4 million people. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.4 Ebola cases in Western district for different age groups. We plot the observed infection dates

which have been imputed to SIR format where the recovery time is the infection date plus a

Poisson random draw with mean λ = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.5 Ebola cases in Western Urban and Western Rural Province treatment centers, Sierra Leone.

We plot the observed infection dates which have been imputed to SIR format where the

recovery time is the infection date plus a Poisson random draw with mean λ = 9. . . . . . . . 120

8.6 Observed Ebola SIR data from 2014-2015 for Western District Sierra Leone and best fit SIR

model with β = 0.16, γ = 0.12 and N = 18768 as a ternary plot. . . . . . . . . . . . . . . . . 123

xix



9.1 SIR curves and 95% CIs for the results of the AM for homogeneous interaction of agents for

the best fit model SIR-CM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.2 Map of infectious agents over L = 100 runs where the hexagons are colored by the average

time of infection of the agents over all the trials for the results of the AM with homogeneous

interaction of agents for the best fit model SIR-CM. The initial infections at time t0 = 200

are plotted as circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.3 Map of infectious agents over L = 100 runs where the hexagons are colored by the average time

of infection of the agents over all the trials for the results of the AM with simple heterogeneous

interaction of agents for the best fit model SIR-CM. The initial infections at time t0 = 200

are plotted as circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.4 Scatter plots of the empirical δx from Eq. (9.1) vs. time until infection for the heterogeneous

interaction and homogeneous interaction of agents with a Loess smoother trend line on top. . 131

9.5 Maps of the average time to infection for heterogeneous interaction of agents with initial

infections in Western Urban (left) and Western Rural (right). . . . . . . . . . . . . . . . . . . 133

9.6 Scatter plots of computer time (left) and Memory (right) vs. log(N) where the lines and

points are colored by the maximum number of neighbors used in the simulation. . . . . . . . 136

A.1 The average number of infections generated by children who become infectious at time t with

a Loess smoother and 95% CI plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Each infected child’s state is plotted over time. Blue is susceptible, red is infectious, and green

is recovered. The alternating shades indicate a change in the household ID of the children. . . 159

A.3 (Top) Network of infections where nodes (children) are plotted by their household location.

The nodes are colored by class, 1st class, 2nd class, or pre-school. (Bottom) Network of

infections faceted individually by class. Nodes are still household locations, rescaled. . . . . . 160

A.4 Plot of rash appearance vs symptom appearance colored by the class. . . . . . . . . . . . . . 161

xx



Chapter 1

Introduction

On October 30, 1861 a German thirteen year-old became stricken with symptoms of what was later confirmed

to be measles, in a town consiting of approximately 600 individuals. By January 30, 1862, the 188th and

final case was recorded. All but 13 children in the village were infected, and the outbreak resulted in 12

fatalities.

On April 30, 2019, an adult resident of Pittsburgh, PA was confirmed to have measles and was treated at

a local hospital. In contrast to the German outbreak, the Pittsburgh outbreak was contained and resulted

in no fatalities. Over 150 years after the German outbreak, measles remains a threat to the well-being of

individuals, despite the existence of an effective vaccine. Fortunately, in addition to significant advances in

modern medicine such as vaccines, statistical modelling has developed as an important tool for prevention

of and intervention of the outbreak of infectious diseases.

Statistical infectious disease modeling broadly focuses on either 1) prediction or 2) inference about a

disease. The first aspect attempts to predict when and where new instances of a disease will occur. The

second aspect attempts to learn information about a disease such as the infection rate, recovery rate, person-

person interaction structure, how different diseases compare to one another, and how environmental and

demographic characteristics of a population influence the outbreak of the disease. Both prediction and

inference allow decision makers to better allocate resources, alert policy makers and the public, and implement

prevention routines, but only the second aspect allows us to to learn why and how a disease transmits through

a population.

In this dissertation, we focus on improving the second aspect: statistical inference of infectious disease.

Specifically, we improve inference by 1) theoretically relating the statistical properties of two classes of

commonly used epidemic infectious disease models, 2) using the theory developed to improve parameter

estimation and model selection within these two classes of models through novel visual diagnostics and

statistical investigation of heterogeneity of disease transmission, and 3) applying these techniques to real
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world data to examine hypothetical scenarios such as the implementation of interventions like isolation and

quarantine.

The introduction proceeds as follows. In Section 1.1 we examine, in detail, related work of the two common

model classes, comparisons of the two classes, hybrid models resulting from combining the two classes, and

how our contribution adds to the collective knowledge and advancement of these models. In Section 1.2, we

examine in more detail how parameter inference, model selection, and diagnostics are commonly performed

within these model classes and how we aim to improve the three aspects. In Section 1.3, we discuss past

and present case studies of measles and Ebola along with our approach to modeling these diseases using real

world data. Finally, in Section 1.4, we summarize our contributions and where they appear in the rest of

the dissertation.

1.1 Model classes: compartment models and agent-based models

In this dissertation, we study and synthesize compartment models (CM) and agent-based models (AM). In

infectious disease epidemiology, the origins of CMs date back to the early 1900s whereas AMs have only

recently gained traction in the past two decades due to advances in computing (Kermack and McKendrick,

1927; Epstein, 2007). Both classes of models enjoy a rich history in epidemiology for both the prediction

and inference of infectious diseases including plague, measles, Ebola, and more.

As CMs and AMs are used to answer the same sorts of questions in infectious disease epidemiology, it

makes sense to compare the two classes of models. At a high level, CMs are historically equation-based

and depend on the assumption of homogeneous interaction of the population. On the other hand, AMs are

simulation-based and begin to incorporate heterogeneous interaction of the population. However, that is not

to say CMs completely lack the flexibility to incorporate heterogeneous interaction. At the same time, it is

typically possible to determine the equations associated with AMs. As such, it becomes natural to question

where the boundaries are between the two classes of models and whether the two classes can be leveraged

to create hybrid models.

In the following sub-sections, we examine the brief history of CMs and AMs and their advancements

in infectious disease modeling. At the end of this section, we discuss our contribution to the collective

knowledge of these two classes of models.

1.1.1 Compartment models

CMs describe the transition of objects among discrete compartments over time. In infectious disease

epidemiology, these compartments reside within the Susceptible-Infectious (SI) framework to describe how

a disease spreads through a population. Perhaps the most well known CM is the SIR model, which stands
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for susceptible, infectious, and recovered, respectively, which was introduced by Kermack and McKendrick

(1927). Since then, more compartments have been added (or removed) to provide a wide class of models to

describe the evolution of objects within the SI-framework. Many such examples are found in Daley et al.

(2001).

Anderson and May (1992) identify two important assumptions in CMs: 1) homogeneity of the population

and 2) the law of mass action. The first assumption is the idea that all objects in a particular state or

compartment will behave in the same manner. The second is a property borrowed from chemistry which

says that the mass of the product of reactants is proportional to the mass of the reactants, or in terms of

infectious disease compartment models, the rate of change of individuals in a compartment at the next time

step is proportional to the number of individuals in the compartment at the current time step. While the

law of mass action is often used in AMs, and is seen in every model in this dissertation, the assumption of

homogeneity is highly controversial and we examine this assumption in detail.

Compartment models within the SI framework can be as simple the SI model or can be made to be quite

complex. For instance, the CM described by Pandey et al. (2014) has 26 compartments! Other common

CMs include MSEIR, MSEIRS, SEIR, SEIRS, SIR, SIRS, SEI, SEIS, SI, and SIS, where M stands for passive

infant immunity and E for exposed but not yet infectious (Hethcote, 2000). CMs have been used to model

a plethora of diseases including plague, HIV, influenza, Ebola, and more (Kermack and McKendrick, 1927;

Anderson and May, 1992; Mills et al., 2004; Althaus, 2014).

Stochastic versions of compartment models have also been studied as to better fit real world data. Some

of the first stochastic versions arise from the Reed-Frost framework (Abbey, 1952), which assumed that

the number of infected individuals in the next generation was distributed from a Binomial with a certain

probability and the current amount of susceptibles. These became known as chain Binomials as they could

be recursively computed. Becker (1981) generalized chain Binomials by allowing a flexible probability of

transition between generations. The idea of the next step’s number of infections being dependent only on

the current state naturally lead to Markov models. These Markov models have been thoroughly examined

(Jacquez and O’Neill, 1991; Allen and Burgin, 2000; Daley et al., 2001). Gani and Yakowitz (1995) describe

how to create confidence interval bounds for deterministic approximations of random processes. Recent

Bayesian approaches have also been attempted such as those described in Lekone and Finkenstädt (2006)

and Fintzi et al. (2017). Researchers such as Figueredo et al. (2014) and Banos et al. (2015) use the Gillespie

(1976) algorithm to create stochastic versions of common compartment models. The Gillespie algorithm is

a form of Monte Carlo sampling that samples events at a random time τ in which an infectious (susceptible)

agent has a chance to recover (or become infectious) in such a manner that the underlying CM average

shape is maintained. These methods are especially useful in the context of epidemiology as monotonicity is

respected in both the number of susceptibles and the number of recovered. For both methods, the magnitude

of the error is closely related to the step size of the calculations, with smaller time intervals typically leading
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to smaller error. In general, stochastic versions of CMs maintain the underlying shape of the deterministic

CM but may vary wildly in variance or distribution.

Although CMs are aggregate models, in the sense that they only track the numbers of individuals in each

state, compared to which state each individual is in, work has been done to incorporate spatial information.

Coupled CMs are the idea of running a single, unique CM for each region but allowing for migration among

regions. These models allow for more heterogeneity but also require fitting a large number of parameters.

Examples of these include the coupled SIR model of Rvachev and Longini (1985) which allows for migration

among 52 cities across the world and more recent examples of metapopulation, which are discussed more

below.

The CMs found in Anderson et al. (1986); Colizza et al. (2006); Hooten et al. (2010); Zhou et al. (2019)

study the effects of adding multiple forms of heterogeneity into the models. For example, Colizza et al.

(2006) examine a large global CM with diffusion of disease for global epidemics and seek to “characterize

the level of heterogeneity” within the model. Hooten et al. (2010) examine a SIRS model and incorporate

spatial-temporal modeling for different regions of the US to study influenza. They conclude that temperature

covariates are very important in examining the spread of the disease. Zhou et al. (2019) examine heterogeneity

of interaction by partitioning a SIR model into different sub-compartments for each of the S, I, and R

compartments to include age structure in order to examine the effects of measles vaccinations in India.

In fact, the possibilities for infectious disease modeling are nearly endless, as described in the

comprehensive overview of epidemic modeling Hethcote (1994), entiled “A Thousand and One Epidemic

Models.” He notes that compartments and epidemic models in general need to be tailored to consider

the aspects of “epidemiological compartment structure, incidence, distributions of waiting times in the

compartments, demographic structure, and epidemiological-demographic interactions.”

As a researcher varies each of the aspects mentioned by Hethcote, more and more heterogeneity is

incorporated into the CM. However, it may become to difficult to keep track of the models, in terms of

equations, as the models become more and more complex.

1.1.2 Agent-based models

In response to the demand for increasingly complex and heterogeneous epidemic models, agent-based models

(AM) were developed. Falling under the broader class of “simulations,” AMs are used to simulate autonomous

agents and their interactions within a constrained environment over time and are described as a “generative”

mode of science (Epstein, 2007).

Two of the first AMs date back to the 1970s with Conway’s Game of Life as described in Adamatzky

(2010) and the segregation of communities of Schelling (1971). These AMs, upon inspection, are quite

similar, and contain all the important aspects of what we would expect to find in an AM. In both these
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models, the environment is partitioned into a lattice and agents occupy cells within this lattice. In Conway’s

Game of Life, an agent may either have a value of dead or alive and in Schelling’s segregation model, agents

are either one of two races or a “null” state. In both these models, an agent’s future state is determined by

its present state along with the present state of the other agents, in particular, their direct neighbors. This

is known as “cellular automata.” The major difference in these two models is that of deterministic versus

stochastic interactions of the agents. In Conway’s Game of Life, the states of agents in an AM are completely

determined by their initial states. On the other hand, Schelling’s model incorporates a stochastic process,

where agents move to another state based on a (literal) flip of a coin. Because of this, the concept of running

multiple instances of a particular AM with given initial parameters is important, as different random draws

produce different results. Through this stochastic process, variability is introduced into the model.

As computers became more powerful and more accessible, AMs became an option as a “new kind of

science” (Wolfram, 2002), neither an inductive nor deductive mode. The AM, Transportation Analysis

Simulation System (TRANSIMS) from Los Alamos National Laboratory is a foundational work in this field.

TRANSIMS is the first, large-scale, data-driven AM of its kind, meaning the agents are based on actual

U.S. citizens from data from the U.S. Census including demographic characteristics such as race and age.

Additionally, the agents include activity information such as commute time and occupation type. The goal

of TRANSIMS is to examine the “transportation infrastructure effect on the quality of life, productivity,

and economy” (Smith et al., 1995).

TRANSIMS has agents with both individual and household characteristics; environments with roads,

workplaces, and households; and activity assignments which have been assigned probabilistically to the

agents and activities through a “route planner.” Smith et al. (1995) note that all models within TRANSIMS

are probabilistic, but the program overall takes more of a results-oriented approach rather than examining

the variation within the model. TRANSIMS builds on the celluar automata framework by dividing a region

into a grid to have a large number of agents evolve in a (relatively) small amount of computational time.

TRANSIMS is still in use and is available today. Moreover, its influence can be found in its successors such

as MATSims and EpiSims (Waraich et al., 2009; Eubank et al., 2004), the former which continues the goal

of examining traffic patterns whereas the latter examines the spread of disease with an AM framework.

More recently, AMs have been used to model the spread of infectious disease (Longini et al., 2004;

Grefenstette et al., 2013). In this field, AMs are sometimes called Individual Level Models (ILM) or Individual

Based Models (IBM), as the term “agent” is more commonly used to describe a biological pathagen as opposed

to the individual who receives the disease. AMs in this field have been used for prediction, inference, and

study of hypothetical prevention strategies (Eubank et al., 2010; Bajardi et al., 2011; Barrett et al., 2013;

Liu et al., 2015a; Wang et al., 2016). Typically in these models, agents are assumed to be non-random,

as are the environments, with the only random variation arising through transference of a disease through
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activities of agents. Variance of estimates are reported through simulation results accumulated by running

the model hundreds of times.

A popular representation for AMs is that of a network or graph-based framework. In this framework, the

agent states (e.g. susceptible, infectious, recovered) are node colorings or labels and the directed edges are

conditional probabilities of evolution of states. The graph then updates at each time step based on current

states and edge weights. However, the graph-based approach is not exclusive to AMs as CMs are often

described in this manner.

Some researchers closely utilize the structure of the graphs. For instance, Liu et al. (2015a) examine the

property of “hubs,” those individuals with many contacts, and examine whether vaccinating these hubs alone

is enough to curb the full effect of an outbreak of a disease. Scheffer et al. (1995) examine the concept of

“super individuals” which simply represent multiple agents of a certain group or class. In this way, Scheffer

et al. can drastically reduce the number of nodes in the graph and correspondingly speed up computational

performance. However, the details of condensing agents into a similar group have not been thoroughly

examined from a statistical perspective. In Siettos et al. (2015), the researchers create an AM in Western

Africa and use small world transitions and vary a parameter which controls the density of the connections

in the graph.

Cressie et al. (2009) note that one of the most difficult issues with AMs is incorporating and keeping

track of uncertainty in the model. Uncertainty in AMs has many sources, including sampling design, model

specification, parameter settings, and initial and boundary conditions. Their recommendation is to use a

hiearchical model to keep track of the different sources of uncertainty, beginning with data, then the process,

and finally the parameters. They also recommend that the models be cross-validated. Furthery, they note

that often AMs suffer from the problem of identifiability.

Although AMs have been used widely in fields such as ecology, sociology, epidemiology and more, their

statistical properties remain largely unstudied. The most important work done with AMs with regards to

statistics is found in Hooten and Wikle (2010), but the work focuses on modeling the underlying probability

of evolving from one state to another rather than the statistical properties of the AM.

As the agents themselves are often estimated or imputed from other sources of data, uncertainty within

the agents themselves is a topic of recent interest. See, for example, Barrett et al. (2008); Chao et al.

(2010); Gallagher et al. (2018). The challenges of incorporating different sources of data are explored both

by Cressie et al. (2009) and Gallagher et al. (2018). The latter provides detail on the data harmonization

process and introduces an open-source R package in order to improve transparency and reproducibility in the

agent generation process. Abar et al. (2017) provide a summary of available AM software tools available.

The primary shortcomings of AMs are two-fold: 1) aligning the model to reality and 2) having sufficient

computational memory and time. Wallentin and Neuwirth (2017) describe this as the computational-

predictive trade-off, and each of the AMs presented above use varied approaches to align models to reality
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while maintaining acceptable computational performance. We discuss their issues more in Section 1.2.

Wolkewitz et al. (2008) aptly summarizes the problems of AMs and epidemic modeling in general when they

state to make models “as simple as possible but not simpler.”

1.1.3 Comparing and combining CMs and AMs

Similarities between CMs and AMs have been noted by many researchers but relatively few papers have

been written about these comparisons. Axtell et al. (1996) write that AMs must be aligned or “docked”

to their underlying model, often empirically, so the two approaches may be compared. Rahmandad and

Sterman (2008) compare deterministic CMs and their AM equivalents, specifically that of the SEIR model.

They find that using a fully connected network of agents, results of the two were quite similar although not

exact. Other network structures such as small world and ring lattice produce markedly different results.

Additionally, Rahmandad and Sterman find that population size has little effect on their results.

Figueredo et al. (2014) compare established AMs with their stochastic-version CMs, produced by the

Gillespie method. They compare the two methods in three case studies relating to cancer by fitting mixed

effect models and comparing the results. They find that although the two models may look similar, they

result in different distributions.

The conclusion from these studies, in general, is that CMs and AMs often produce similar results, but

AMs may produce extra results due to being able to track individuals throughout time. Many studies reveal

that AMs and CMs sometimes act the same and sometimes differently. For example, Yang et al. (2015)

note that heterogeneous networks are not strictly more infectious than homogeneous networks and look for

critical levels of infection. They note that it is the heterogeneity of infection risk and not heterogeneity of

agent interaction that determines the likelihood of outbreaks. Moreover, even though researchers seem to

value variability in their simulations, they typically only analyze the mean (Edwards et al., 2003; Chen et al.,

2004; Vincenot et al., 2011).

Some modelers attempt to leverage the advantages of both CMs and AMs by combining them into hybrid

models. Analyzing global versus local effects, Fahse et al. (1998) decompose the system into two different

time scales where one feature evolves more rapidly than the second. From this, they are able to extract

global parameters from the AM. Also in ecology, Wallentin and Neuwirth (2017) examine switching between

equation-based models and AMs in a predator-prey model in order to examine the computational-predictive

trade-off. The conclusion is that they obtain different results from different models but that AMs can indeed

be useful in terms of computational and predictive performance.

Bobashev et al. (2007) create a hybrid model, based on the SEIR model. Their model uses homogeneous

agents to better demonstrate the relationship between CMs and AMs. This hybrid model utilizes an AM

when the number of infected individuals is below a pre-selected threshold and then switches to a CM when
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the number of infected is large. Their idea is that when the number of infected is large enough, the outbreak

is stable enough to model through CMs, an idea also related by Jaffry and Treur (2008). This threshold is

heuristically determined. The intuition is that heterogeneous effects are most important at the beginning

and end of an outbreak and hence need a more detailed model at those times.

Banos et al. (2015) create a hybrid model, which they describe as a metapopulation model, that uses

a SIR model within cities and agents traveling between them. Hanski (1998) describes metapopulation as

the technique of reducing individuals and their ecosystem into a network structure. In this way, individuals

grouped in a similar environment are assumed to behave the same way, yet migration is often allowed among

the sub-populations. Banos et al. (2015) compare this hybrid model to a coupled SIR model in cities with

instantaneous travel of agents and find that although results are similar when looking at aggregate totals

of individuals, the models diverge when prevention strategies such as quarantine and avoidance are applied.

The idea of metapopulation hybrid models is also explored in Bajardi et al. (2011), which studies the spread

of the 2009 H1N1 pandemic. Here, a SEIR-like model is implemented within countries and individuals are

able to travel among them, thus allowing them to analyze prevention strategies such as travel bans.

Another meta-population model is examined in Bradhurst et al. (2015) which studies the spread of foot

and mouth disease in cattle. In this model, instead of CMs and equations controlling the diffusion of disease

among communities, the communities themselves are treated as agents that interact with one another, and

instead, CMs are used to track the spread of disease within communities.

The idea of hybrid models is generally well-received but the details, statistical and otherwise can be sparse

and situation-dependent. Our contribution to the improvement of the collective knowledge of CMs, AMs,

and any hybrids is showing statistically how the two classes of models are equivalent under certain (often

light) conditions. This in turn can be used to help standardize parameter estimation and model selection.

1.2 Parameter estimation and model selection

All the models presented above rely on paremeters such as wait times between states (e.g. infection rate (β)

and recovery rate (γ)) or number of individuals in a population (N) to determine results of the epidemic.

How these parameters are chosen or estimated varies from model to model. Moreover, the problem of model

selection is a difficult problem in itself, even when comparing models within the same class (e.g. a SIR model

among the entire population vs. a SIR model split between children and adults).

Common methods for parameter estimation methods include minimizing an objective function (e.g. mean

square error (MSE), mean absolute error (MAE), or squared norm of probability), regardless of distributional

assumptions of noise (Brooks et al., 2015; Nakamura et al., 2017). Another method for parameter estimation

method that is commonly used is maximum likelihood, which can be either parametric or non-parametric,

although parametric models seem to be more common due to their interpretability (Cressie et al., 2009;
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Shrestha et al., 2011; King et al., 2015; Venkatramanan et al., 2018). These likelihood based methods can

be interpreted in either a frequentist or Bayesian method depending on assumptions about the data and the

parameters (Wheeler and Waller, 2008; He et al., 2009; Venkatramanan et al., 2018).

Parameters commonly estimated in CMs and AMs include β the infection rate; γ, the recovery rate; R0

(average number of new infections when an infectious individual is introduced to a completely susceptible

population), the reproduction number; ω, the serial interval (time between primary and secondary infection),

the peak infectious percent, the peak day of infection, the final size of an epidemic (total amount of the

population which has been infected over the course of an outbreak), and the outbreak duration. In addition

to parameter point estimates, parameter variation and CIs also must be estimated. Gallagher et al. (2019)

survey nine waysR0 and its sampling error are estimated and demonstrate the differences with an application

to the 2009 influenza pandemic in the US.

Along with parameter variation estimation, sensitivity analysis of parameters is commonly performed

in both CMs and AMs. Sensitivity analysis allows researchers to see how robust model results are to

their parameter selections or estimates. The difference between sensitivity analysis and parameter variation

estimation is that sensitivity analysis is typically not associated with distributional assumptions of noise

whereas variation estimation is. Examples of sensitivity analysis are seen in Rahmandad and Sterman

(2008); Chao et al. (2010); Hunter et al. (2018).

Model selection is also important in epidemic modeling. The first step of model selection is typically

informed by medical experts and indicates which disease-level states individuals in a population may occupy

in an epidemic. Common states are susceptible (S), exposed (E), infectious (I), and recovered (R) but other

states include immune (M), funeral (F) transmission, and hospital (H) transmission (Venkatramanan et al.,

2018).

Once the disease-level states are determined, model selection still must be done with the class of models

restricted to the disease-level states. Common ways to select models are cross-validation, or minimizing an

objective function, perhaps with a penalty on the number of parameters, such as in the Aikaike Information

Criterion (AIC) (Wasserman, 2004; Cressie et al., 2009). For infectious disease modeling, cross-validation

may be particularly difficult as data are often only seen for one epidemic “cycle” and the outbreaks themselves

are vary both temporally and spatially. Cross validation has successfully been performed for cyclical and

seasonal diseases such as influenza using a technique known as leave-one-season-out cross validation (Brooks

et al., 2015).

Another aspect to consider in model selection is the level of homogeneous or heterogeneous interaction of

indviduals within the model. Colizza et al. (2006) address this issue by measuring the level of heterogeneity

of disease prevalence with entropy and using the entropy value in a hypothesis test for networks.

We improve model selection for the SIR-framework by introducing two novel visualizations, a log-linear

plot and a ternary plot. The log-linear plot is derived from a recent theoretical result about SIR ordinary
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differential equations (ODE) (see Harko et al. (2014)). This theoretical result allows us to transform the

observed SIR data so that R0, the reproduction number, may be interpeted as the slope of the line through

the transformed data. This, in conjunction with weighted linear regression, where the weights are estimated

as the plug-in estimates of the inverse of our variance calculations of the number of individuals in each state,

allow us to develop prediction intervals that empirically cover 95% of the observed data. As such, a plot of

this nature allows modellers to assess whether the SIR-framework is a good fit for the data.

The second visualization, the ternary plot, is even more flexible than the log-linear plot, since it can

be used to assess multiple groups within the SIR-framework (e.g. children and adults). Ternary plots

are used to visualize SIS (which is comparable to SIR data) models in Safan et al. (2006), specifically to

examine theoretical equilibria. Our diagnostic ternary plot extends and improves upon these theoretical

SIR visualizations by introducing observed data to the ternary plot, adding 95% confidence regions, and

visualizing the time scale. Our ternary plot can be used in a number of situations to assess the fit of a

model.

To improve inference and to emphasize preference towards simpler models, we introduce a statistical

investigation specific to the SI-framework to determine whether an agent interaction structure is homogeneous

“enough” so that it can be treated as a simpler stochastic CM, which is associated with faster run times and

possibly a more interpretable model. We also discuss the limitations of this statistical investigation.

1.3 Applications and decision making

Our final contribution to the improvement of inference in epidemic disease modeling for CMs and AMs

involves two applications to real world data. We analyze two different scenarios in order to highlight different

features of the CM-AM pairs.

The first scenario is an outbreak of measles in Hagelloch, Germany. The outbreak is quick and limited,

occurring over a span of just over 90 days and involving fewer than 200 individuals. The Hagelloch

outbreak is advantageous for testing epidemic models for two reasons: 1) because the outbreak is small

and occurs in a fairly isolated village where the demographic population is fairly homogeneous, we are far

more confident in making modeling assumptions about the population, especially in contrast to a large region

with a heterogeneous population, and 2) the Hagelloch outbreak data contains rich demographic features

and individual interaction structure such as shared households and school information.

The Hagelloch data was analyzed in Neal and Roberts (2004) and examined different population

interactions such as household and classroom structure. Despite the data having originated in 1861, measles

remains a threat to the well-being of indviduals all over the world, as evidenced by the recent outbreak in

the USA (Stobbe, 2019).
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Measles has been consistently studied in infectious disease epidemiology. For example, along with German

measles (not to be confused with the outbreak of measles in Germany shown in this dissertation) and chicken

pox, Abbey (1952) identifies measles as a disease that can be modeled, using the Reed-Frost Binomial

transition model. Anderson and May (1992) note that measles is one of the most infectious diseases in

terms of its reproduction number, R0. Bhadra et al. (2011) note that measles is a convenient disease to

study due to its “clear clinical diagnosis, direct human-to-human transmission, lifelong immunity following

infection, and the availability of extensive spatio-temporal incidence data.” Chris et al. (2012) also analyze

the Hagelloch data through the use of an SEIR model and He et al. (2009) analyze the outbreak of measles in

a boys’ dormitory in order to explain their “plug-and-play” likelihood based inference methods and software.

With regards to CMs and AMs, Zhou et al. (2019) examine SIR epidemic models with age structure to

determine best vaccination strategies for measles. Liu et al. (2015a) studies the role of vaccination coverage

for the control of measles outbreaks in California. Getz et al. (2016) also studies the role of vaccinations in

measles outbreaks, this time using an AM. Hunter et al. (2018) use an AM to examine the spread of measles

with regards to population dynamics in Ireland in 2012.

We improve upon existing measles analysis by examining the Hagelloch data. More specifically, we

utilize the theory and model selection methods developed in this dissertation to first find an adequate CM-

AM pair for the model. Once our initial model is found, we use the properties of the CM-AM pair to analyze

hypothetical scenarios including general reduction of the infectivity of the disease, isolation and quarantine

procedures, and school closing.

The second case study examines the recent Ebola outbreak in Western Africa, specifically in Freetown,

Sierra Leone. The data covers a time span from 2014-2015 where over 8,000 individuals were infected in

a population of approximately 1.4 million people. This Ebola outbreak is much larger in scale than the

Hagelloch outbreak and allows us to show how CM-AMs can scale when the number of individuals in a

population or the number of infections is large. However, despite the outbreak being larger in scale, the data

for the Ebola outbreak we have access to contains little demographic information about the infected cases.

Ebola has been of recent interest in epidemic modeling due to outbreaks in Africa over the past decades.

Ebola is also a disease of interest because of its unique transmission structure, as transmission can be passed

on from those already deceased as well as transmitted through eating “bushmeat” (Rizkalla et al., 2007;

Pandey et al., 2014; Siettos et al., 2015). Studies have been focused on the areas of the Democratic Republic

of the Congo, Guinea, Liberia, and Sierra Leone (Rizkalla et al., 2007; Althaus, 2015; Siettos et al., 2015;

Ajelli et al., 2016; Nakamura et al., 2017). Both CMs and AMs have been used to estimate R0, estimate

disease parameters in the presence of complex interaction structures such as households, hospitals, Ebola

treatment units (ETU), and contact tracing (Ajelli et al., 2016; Brown et al., 2016).
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Special focus has been concentrated on decision making for regions infected with Ebola. For example,

“ring trials” focus on vaccinating the contacts and contacts of contacts of the primary infected cases (Henao-

Restrepo et al., 2017). Backer and Wallinga (2016) represent the outbreak as “network of local epidemics...to

effectively control emerging infections.”

In our study of Ebola, we examine high-level concepts such as spatial spread due to heterogeneous

individual interactions, sensitivity to initial infection locations, and the importance of the value of the

effective population size, N . The first two concepts have been studied in Henao-Restrepo et al. (2017) and

Shrestha et al. (2011), for instance. We extend these studies through special emphasis on the variance of our

estimates which include peak infectious day, peak infectious percentage, epidemic duration, and final size.

For the third aspect, the effective population size (not to be confused with time-varying population size),

few if any prior analyses are available.

1.4 Dissertation structure

To summarize, the goal of this dissertation is to improve upon current inference in statistical disease modeling

for CMs and AMs. We improve inference through the three following steps:

1. Theoretical contributions linking the similarities between CMs and AMs

2. Improvements in model selection via methodology for quantifying heterogeneity and visual diagnostics

3. Demonstrations of theory and methodology via applications to real world data.

The structure of this dissertation is given in the following manner. In Chapter 1 we have introduced the

problem, described work by other researchers, and foreshadowed our contributions.

Chapters 2-3 address the first step of theoretical contributions for CMs and AMs. In Chapter 2, we

introduce the problem using a concrete example of a CM within the SIR-framework. We show the expected

value and variance of the number of individuals in each of the S, I, and R states at a given time in our

Binomial transition model. Following that, we show how the CM may also be written in the form of an AM

and be equivalent in distribution in terms of the number of individuals in each state at a given time. We

then show how a CM with a specific (but useful) form may be written as an AM and call this the CM-AM

pair.

In Chapter 3, we relax the assumptions on the form our CM may take and show that under more general

assumptions, each CM has an AM pair. We demonstrate this concept with an example which we call the

“lock-step” model. Additionally, we show that any AM has an equivalent CM, but this CM-AM pair is

dependent on the total number of states allowed in the CM. At the end of the chapter, we discuss the

implications of our results and how they guide model selection.
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Chapter 4 addresses the second step of improving parameter inference and model selection, limited to

the SI and SIR-frameworks. We introduce two novel visualizations which can aid researchers in assessing

model selection for models within the SIR-framework. Additionally, we introduce a statistical investigation

to determine whether an agent interaction structure is homogeneous “enough” in that the epidemic model

can be adequately modeled through a simpler CM with homogeneous interaction of agents.

Chapters 5-9 comprehensively demonstrate the theoretical and methodological contributions presented in

Chapters 2-4 using two real world data applications. Chapters 5-7 examine an outbreak of measles in a small

town in Germany during the 1860s. In Chapter 5, we examine the data and find a best fit CM-AM pair.

After we find our best fit model, we examine hypothetical scenarios with our AM. In Chapter 6, we examine

how the results of the outbreak may have changed if we were able to generally reduce the infectivity of the

disease across the entire population. Then in Chapter 7, we examine more tangible intervention scenarios

such as isolation and quarantine of infectious agents and closure of the school.

In Chapters 8-9, we study the Ebola outbreak of 2014-2015 in Western District, Sierra Leone, which

includes the capital of Freetown. In Chapter 8 we examine the Ebola data set and perform model selection

within the SIR-framework. We find N , the effective population size to be particularly important in selecting

the best model within this framework. After model selection, in Chapter 9, we study hypothetical scenarios

with our selected CM-AM pair. Specifically, we perform experiments to examine the effect of heterogeneous

versus homogeneous interaction of agents, sensitivity of the model to the location of initial infectors, and

the size of the effective population.

Finally in Chapter 10 we summarize the results of the dissertation and discuss directions for future work.

13





Chapter 2

Statistically relating CMs to AMs

2.1 Background

Agent-based models (AM) have become an increasingly more common model class used to study the spread

of disease throughout a population over a period of time. For example, recent use cases of AMs include

developing mitigation strategies for the spread of smallpox, predicting the effect school closures have on the

spread of influenza, and inferring the infectiousness of measles given a complex network structure (Eubank

et al., 2004; Grefenstette et al., 2013; Liu et al., 2015b).

Recall, that AMs, as described in Chapter 1, model the movement of individuals, known as agents, through

states (e.g. susceptible, infectious recovered) over time, where the movement of the agent is dependent on

the states of the other agents as well as the environment.

Like any other statistical model, the validity of inference from an AM depends on the assumptions

underlying the model. Specifically, these assumptions include validity of the agents themselves, validity of

the environment in which the agents interact, validity of the interaction structure among the agents and

their environment, and validity of disease parameters used in the simulations. If these assumptions hold,

we can trust inferences from our AMs which, in turn, can help researchers explore unique hypothetical

situations. See for example Carley et al. (2006) which explores reactions to a hypothetical release of anthrax

in Washington D.C. Checking the validity of these assumptions is known in the AM literature as “docking”

(Axtell et al., 1996).

We address the problem of docking by relating AMs theoretically to compartment models (CM), which

have been used in epidemiological modeling to predict and study the outbreak of diseases for nearly one

hundred years (Anderson and May, 1992). For the subject of epidemiological modeling, CMs have been used

from a statistical perspective for over 70 years (Abbey, 1952) and many papers and books have been written

about the properties of CMs. In particular, numerous papers and books have been written about how to fit
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statistical disease models to data. In other words, statisticians and epidemiologists have spent much time

and effort to dock CMs to reality. For example, recent software packages developed to aid the researcher in

fitting CMs to data include tSIR and pomp (King et al., 2015; Becker and Grenfell, 2017), which are both

available for the R language. The prevailing idea is that improved docking of AMs, will, in turn, lead to

better inference with AMs, which will ultimately allow for the better understanding of disease outbreaks.

If we can relate AMs to CMs in a statistically useful manner, then we have the whole literature of model

fitting available to us to improve inference in AMs.

In this chapter, we integrate AMs into the established statistical framework for CMs. We do this by

introducing (or incorporating) standard statistical terminology for deterministic epidemiological models,

stochastic CMs, and stochastic AMs. Following that, we show that given a fixed deterministic model we

can create equivalent CM-AM pairs in terms of equal number of individuals within different states (e.g.

susceptible, infectious, or recovered). Finally, we show that a fixed deterministic model is not required and

that we can create an equivalent AM for any existing CM and vice versa. This equivalency is based on

the same parameters used in both models and hence estimation of these parameters in one framework is

equivalent to estimation of the parameters in the other.

This chapter proceeds as follows. In Section 2.2 we describe the CM-AM equivalence with a concrete

example, the Kermack and McKendrick SIR. We introduce concepts such as the deterministic transition

matrix, the stochastic CM, and the stochastic AM. We also show how a particular CM-AM pair is equivalent

given the deterministic transition matrix for the SIR model. In Section 2.3, we generalize the concepts in

Section 2.2 to a large class of models and show how given a deterministic transition matrix, we can have

equivalent CM-AM pairs. Finally, in Section 2.4, we summarize the chapter.

2.2 A minimal example: Kermack and McKendrick SIR model

We begin with an example based on the Kermack and McKendrick (1927) deterministic SIR-CM, which

we will refer to as the K&M model. The original K&M model is presented as continuous time differential

equations. Unless otherwise noted, we will instead use the discrete time version (replacing d with ∆ and with

∆t = 1). We use the discrete time version because of three reasons: 1) data is always collected in discrete

time; 2) the equations may always be re-scaled to any appropriate time unit; and 3) agent-based models are

inherently discrete time models.

The K&M model describes how individuals move from the susceptible state (S), to the infectious state

(I), and finally the recovered/removed state (R) over time given the initial number of individuals in each

state. The model is commonly shown graphically in Figure 2.1.

The K&M model assumes the following properties:

1. Individuals may occupy only one state at a given time.
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Figure 2.1: Graphical representation of the K&M SIR model. The circles represent states of individuals:
Susceptible, Infectious, or Recovered, respectively. The arrows represent how individuals may move from one
state to another over time. The expressions above the arrows represent the rates at which the individuals
move from one state to the next.

2. Individuals within the same state at time t are homogeneous. That is, they are indistinguishable from

one another.

3. All individuals within the total population mix homogeneously.

In this model, one or more infectious individuals are introduced to a population at time t = 0, giving a

total population size of N . The susceptible individuals subsequently have the possibility to become infected

and recover over time. The numbers of non-random susceptible, infectious, and recovered individuals at time

t are S(t), I(t), R(t), respectively. We assume the total population size is fixed and so

S(t) + I(t) +R(t) ≡ N.

The rate of individuals moving from one time step to the next (∆t) is given by Eq. (2.1), where β is the

average rate of infection given in (time unit)−1 and γ is the average rate of recovery given in (time unit)−1.



∆S
∆t = −S × β I

N

∆I
∆t = S × β I

N − I × γ

∆R
∆t = I × γ

(2.1)

Since the total population is constant then it follows that

∆S

∆t
+

∆I

∆t
+

∆R

∆t
≡ 0,

and so one of the rates of change for one of the states is completely determined by the rates of change by

the other two states. In this example, it is clear that ∆I
∆t = −∆S

∆t −
∆R
∆t .

Another way to write Eq. (2.1) is through deterministic transition matrix D(t), a K ×K matrix where

entry Dij(t) gives the non-negative number of individuals moving from state i to state j from time t− 1 to
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t. For the K&M model, K = 3 and X(t) = (S(t), I(t), R(t))T ,

D(t) = p(t)X(t) =


1− β I(t)N β I(t)N 0

0 1− γ γ

0 0 1




S(t)

I(t)

R(t)


The difference equations in Eq. (2.1) are recovered if we take ∆X

∆t = (D(t)T −D(t))1, where 1 is a vector

of ones. The form D = pX incorporates the assumption “law of mass action,” a property borrowed from

chemistry which says that the mass of the reactants is proportional to the mass of the products (Anderson

and May, 1992). Translating this to infectious disease epidemiology, we say that the number of individuals

moving out of state i from time t− 1 to t is proportional to Xi(t− 1), the number of individuals into state

i at time t− 1.

Notice that the change in the number of individuals in susceptible states is proportional to the old number

of individuals in susceptible states. The difference in the number of individuals in susceptible states from

time t−1 to t is dependent not only on β but also the percent of individuals who are infectious at time t−1,

I(t − 1)/N . In contrast, the difference in number of individuals in the infectious state from time t − 1 to t

is dependent only on the previous number of individuals in the infectious state and γ, the average recovery

rate.

Originally, the K&M model was used to estimate the spread of plague in England. In particular, Kermack

and McKendrick devised a method to efficiently solve for (as opposed to estimate) β and γ in the presence

of data.

2.2.1 The stochastic SIR-CM

Since its debut in 1927, statisticians have converted the K&M model into stochastic counterparts which

may account for noise. These include the Reed-Frost chain Binomial presented by Abbey (1952), numerous

Markov processes described by Daley et al. (2001), and the “plug-and-play” methods described by He et al.

(2009).

In particular, we will focus on an adaptation of the Reed-Frost chain Binomial with probabilities that

mimic the original K&M equations. In particular, the stochastic SIR-CM we use is

Zt−1,S |St−1, It−1 ∼ Binomial

(
St−1, β

I(t− 1)

N

)
Zt−1,R|St−1, It−1 ∼ Binomial (It−1, γ) (2.2)
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St |St−1, It−1 = St−1 − Zt−1,S

It|St−1, It−1 = N − St −Rt

Rt |St−1, It−1 = Rt−1 + Zt−1,R, (2.3)

with (S0, I0, R0) = (S(0), I(0), R(0)).

In words, the new number of individuals in the susceptible state at time t, conditioned on the number

of individuals in all states at time t− 1, is equal to the old number of individuals in the susceptible state at

time t− 1 minus a Binomial draw with the size argument as the old number of individuals in the susceptible

state and a probability based on both β and the proportion of infectious individuals at time t− 1.

Similarly, the new number of individuals in the recovered state at time t, conditioned on the number of

individuals in all states at time t− 1 is equal to the old number of individuals in the recovered state at time

t − 1 plus a Binomial draw with the size argument as the number of individuals in the infectious state at

time t− 1 and the probability argument as γ.

Finally, in Eqs. (2.2)-(2.3) we set the initial values to those in the deterministic K&M model. That is,

we assume the initial values are known.

We use the model presented in Eqs. (2.2)-(2.3) for a number of reasons: 1) Binomial draws conditioned

on the previous number in states are an intuitive way to model an outbreak, 2) the S state is monotone

non-increasing and the R state is monotone non-decreasing, just like in the K&M equations, and 3) the

model is unbiased with respect to the original K&M equations.

We first determine the expected value and variance of the states in the models in Eq. (2.2).

Theorem 2.1. Assume we are given a deterministic SIR-CM as in Eq. (2.1) and a corresponding stochastic

SIR-CM as in Eq. (2.2)-(2.3). Then the expected value of the stochastic CM in terms of the state sizes at

each time step is unbiased. That is, for all t = 0, . . . , T

E[St] = S(t)

E[It] = I(t)

E[Rt] = R(t).

In Theorem 2.1, the left hand side is the expected number of individuals in the susceptible, infectious, and

recovered states, respectively from stochastic SIR-CM and the right hand side is the deterministic number of

individuals in the susceptible, infectious, and recovered states, respectively from the deterministic SIR-CM.

The result of this theorem is that, on average, draws from the stochastic SIR-CM will mimic the shape of of

the curves from the deterministic SIR-CM.
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Proof. We show the proof for E[St]. The other states follow the same idea. The base case is

E[S1] = E

[
S0 − Binomial

(
S0,

βI(0)

N

)]
= E

[
S(0)− Binomial

(
S(0),

βI(0)

N

)]
= S(0)− S(0)

βI(0)

N

= S(1)

For the other states, this also holds. That is, E[I1] = I(1) and E[R1] = R(1). A recursive relation is used

through use of the law of iterated expectation. Namely,

E[St] = E [E [St|St−1, It−1]] (law of iterated expectation)

= E

[
E

[
St−1 − Binomial

(
St−1,

βI(t− 1)

N

)
|St−1, It−1

]]
= E

[
St−1 − St−1

βI(t− 1)

N

]
= S(t− 1)− S(t− 1)

βI(t− 1)

N

= S(t).

In this proof, note that the first argument in the Binomial is a random variable and the second argument

βI(t− 1)/N is non-random. This proof, however, still holds true if we allow I(t− 1) = It−1 since St−1 and

It−1 are independent of one another given the initial states.

Moreover, we can compute the model variance of the stochastic SIR-CM in Eq. (2.2).

Theorem 2.2. The model variance for Eq. (2.2) is given recursively,

V [St] = S(t− 1)(1− pt−1)pt−1 + (1− pt−1)2V [St−1] (2.4)

V [It] = V [St] + V [Rt]− 2 · Cov[St, Rt]

V [Rt] = I(t− 1)γ(1− γ) + (1− γ)2V [Rt−1] + γ2V [St−1]

− 2γ(1− γ) · Cov (St−1, Rt−1)

Cov [St, Rt] =− γ(1− pt−1)V [St−1] + (1− γ)(1− pt−1)Cov[St−1, Rt−1].

As a result of Theorem 2.2, we see that the model is dynamically changing in variance for each state

for an increasing t. This makes intuitive sense as the uncertainty accumulates over time. We demonstrate
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Figure 2.2: Expected value for each state for each time step from simulations (solid) and calculations
(dashed). These sets of lines almost completely overlap. The simulations and calculations were generated
with L = 5000, N = 1000, S(0) = 950, I(0) = 50, β = 0.10, and γ = 0.03.

this concept in the following simulations. We simulate an epidemic under the following settings: N = 1000,

S(0) = 950, I(0) = 50, β = 0.10, and γ = 0.03. We generated L = 5000 sets of simulated data. The results

are plotted in Figures 2.2 and 2.3. These figures show that the simulated expected values for each state and

each time step match the calculated values as the sets of lines nearly overlap. Similarly, the sample variance

from the simulations for each of the states at each time nearly overlaps with the calculated variance. Note

that the peak variance for the infectious state V [It] coincides with the peak of the infection.

2.2.2 The stochastic SIR-AM

We can also model the deterministic K&M SIR equations using an agent-based model (AM). We denote

the state of the agent n = 1, . . . , T at time t = 0, 1, . . . , T as At,n ∈ {1, 2, 3}. Let {1, 2, 3} represent the

susceptible, infectious, and recovered states, respectively. Let the total number of agents at time t and in
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Figure 2.3: Variance for each state for each time step from simulations (solid) and calculations (dashed).
These sets of lines almost completely overlap. The simulations and calculations were generated with L =
5000, N = 1000, S(0) = 950, I(0) = 50, β = 0.10, and γ = 0.03.
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state k be given by the random variable

Xt,k =

N∑
n=1

I {At,n = k}

where I {·} is the indicator function of its argument. Finally, let At be the collection of all N agents at time

t, At = (At,1, . . . , At,n).

Then the AM is specified by the following movement of the agents:

Wt−1,n,S ∼ Bernoulli

(
β
I(t− 1)

N

)
Wt−1,n,R ∼ Bernoulli (γ)

At,n|At−1 =


1 +Wt−1,n,S if At−1,n = 1

2 +Wt−1,n,R if At−1,n = 2

3 if At−1,n = 3

. (2.5)

In the stochastic K&M SIR in Eq. (2.5), the agents have a chance of moving to the next state, dependent

on their current state, just like in the stochastic SIR-CM. However, now we distinguish between individuals,

as each agent receives its own random update Wt−1,n,S or Wt−1,n,R depending on its state at time t− 1.

Theorem 2.3. Let there be a deterministic SIR-CM as given in Eq. (2.1), a stochastic SIR-CM as given in

Eq. (2.2), and a stochastic SIR-AM as given in Eq. (2.2). Then

(S, I,R)
d
= (X1, X2, X3).

The take away from Theorem 2.3 is that the joint distribution for the number of states in the stochastic

SIR-CM and the stochastic SIR-AM are equivalent. The proof of Theorem 2.3 is contained in a more general

result, described in the following section.

2.3 General CM-AM pairs given a transition matrix

We can create equivalent CM-AM pairs for a much wider class of models than just the K&M deterministic

SIR-CM. In fact, given any deterministic CM with transition matrix D(t) of size K×K, we can create CM-

AM pairs that are jointly equivalent in distribution in the number of individuals in each state k = 1 . . . ,K

and Xt is unbiased with respect to D(t).

Let D(t) be a K ×K transition matrix for a deterministic CM, where K is the total number of states.

Let entry Dij(t − 1) ≥ 0 be the non-negative number of agents moving from state i to state j from time

t − 1 to t. Then
∑K
j=1Dij(t − 1) = Xi(t − 1), the total number of individuals in state i at time t − 1 and
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∑K
i=1Dij(t − 1) = Xj(t), the total number of individuals in state j at time t. We construct equivalent

stochastic CM-AM pairs through the following process.

In the K&M SIR-CM, individuals only have one possible state to move to at a given time. Individuals

within the susceptible state may only move to the infectious state, and infectious individuals may only move

to the recovered state. Since there is only one choice (moving or not), we can use the fact that the sum of N

independent and identically distributed (i.i.d) Bernoulli variables is equivalent in distribution to a Binomial

variable drawing from size N ,

Wn
iid∼ Bernoulli (p)

Z∼Binomial (N, p)

N∑
n=1

Wn
d
= Z.

In more general systems, individuals may have more than one state they can move to, and we instead use

the Multinomial/Multinomial equivalence shown in Eq. (2.6),

Wn
iid∼ Multinomial(1,p)

Z∼Multinomial(N,p)

N∑
n=1

Wn
d
= Z, (2.6)

where p = (p1, . . . , pK) is a vector such that pj is the probability of moving from the current state to state

j = 1, . . . ,K.

Then for a single state i, the difference equation is given by the sum of the number of individuals moving

into state k and minus the sum of the number of individuals moving out of state k in a single time step,

∆Xi(t)

∆(t)
=
(
(DT (t− 1)−D(t− 1))1

)
i
. (2.7)

Let pi(t) = (pi1(t), . . . , piK(t)) be a (non-random) vector of size K be the normalized transition rates, where

pij(t) =
Dij(t)

Xi(t)
. (2.8)

Stochastic CM for Dt.

Assume there is a deterministic CM with states {k; k = 1, . . . ,K}, and assume the number of individuals

in each state at each time step is given by the random variable XCM =
(
XCM
t1 , . . . , XCM

tk

)T
. Further assume

movements are given between pairs of states by deterministic, discrete time difference equations, a K ×K
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matrix D(t), such that entry Dij(t) ≥ 0 where Dij(t − 1) is the number of individuals moving from state

i to state j 6= i from time t − 1 to t. Here, pij(t) is the (non-random) probability of an individual moving

from state i to j from time t to t+ 1.

The stochastic version of the CM relies on Multinomial draws Zti for i = 1, 2, . . . ,K where Zti =

(Zti1, . . . , ZtiK) is a row vector,

Zti ∼ Multinomial
(
XCM
ti ,pi(t)

)
.

That is, the number of individuals who move from state i to j from time t to t+ 1 is Ztij , the jth entry of

Zti. The first argument is a random variable and the second is non-random. Define Zt as a K ×K matrix,

Zt =


Zt1

...

ZtK

 ,

where entry Ztij is the random number of individuals who move from state i to state j from time t to t+ 1.

Then, the general stochastic CM for t ∈ {1, . . . , T} is

XCM
0 = X(0)

XCM
t = ZTt−1 · 1K , (2.9)

where 1K is a vector of ones of length K. The number of individuals in state i at time t is equal to the

number of individuals moving from state j to state i, summing over all j, from time t − 1 to t. The law of

mass action is what allows us to say pij(t) ∈ [0, 1] for all i = 1, . . . ,K, and by design
∑K
j=1 pij(t) = 1. We

are thus specifying a valid probability distribution. We let XCM = X(0), that is the initial values in both

the deterministic and stochastic models are equal and known.

Stochastic AM. We can create a matching stochastic AM for the deterministic CM in Eq. (2.9). In

keeping with our matrix notation, instead of letting an agent Atn equal a scalar value, we now say

Atn = ek ∈ {0, 1}K ,

where the kth entry of the column vector ei is one and the rest are zero. We say that an agent Atn = ek is

in state k at time t.

Given the correct initial values in each state, for an agent Atn, n = 1, 2, . . . , N an agent may move (or

may not) from its current state i to state j based on a probabilistic draw Wtni, a row vector of size K having
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a Multinomial distribution,

Wtni
iid∼ Multinomial (1,pi(t))) for i = 1, . . . ,K.

Then Wtn is a matrix of size K ×K

Wtn
iid∼


Wtn1

...

WtnK

 .

In words, Wtni indicates which state agent n will move to from time t to t+1, given that agent n is currently

in state i. The index n says that each agent within the same state moves according to an independent,

identically distributed (iid) variable.

Agent n then updates according to

Atn = WT
t−1,nAt−1,n. (2.10)

That is, agent n only moves from state i to j from time t− 1 to t if and only if At−1,n = ei and Wtnij = 1.

Equation (2.10) may make more intuitive sense, if we view it in terms of its transpose,

Atn =
(
AT
t−1,nWt−1,n

)T
.

Then we see that because At−1,n = ei, the only non-zero terms are obtained from the ith row of Wt−1,n.

The aggregate total in the states, expressed as a column vector, is

XAM
t =

N∑
n=1

Atn. (2.11)

We show the stochastic CM and stochastic AM have equivalent joint distributions in terms of the size of

the states.

Theorem 2.4. Fix an underlying deterministic CM with K states and known initial values and difference

equations. Let the stochastic CM be described by Equation (2.9) and the stochastic AM be described by

Equation (2.11). Then

XCM d
= XAM .
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Proof. The main idea in this proof is due to the Multinomial/Multinomial relationship described in Equation

(2.6) and a recurrence relation between the past step and the current step.

We begin with the stochastic AM specification in Equation (2.10) and (2.11) and show that this is equal

in distribution to the stochastic CM specification in Equation (2.9),

XAM
t

d
=

N∑
n=1

(Wt−1,n)
T
At−1,n

d
=

N∑
n=1

(
AT
t−1,nWt−1,n

)T
d
=

N∑
n=1

K∑
i=1

(
I {At−1,n = ei} · eTi Wt−1,n

)T
(2.12)

d
=

N∑
n=1

K∑
i=1


eTi



0
...

I {At−1,n = ei}Wt−1,ni

...

0





T

(2.13)

d
=

K∑
i=1


I {At−1,n = ei} · eTt−1,i



0
...∑N

n=1 I {At−1,n = ei}Wt−1,ni

...

0





T

(2.14)

d
=

K∑
i=1


eTi



0
...

Zt−1,i

...

0





T

(2.15)

d
=
(
1T · Zt−1

)T
d
= ZTt−1 · 1
d
= XCM

t .
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Equation (2.12) to Equation (2.13) is due to the fact that the only draws that are relevant for an agent in

state i, are the Multinomial draws in row i of Wt−1,n. Since in Equation (2.14),

∑
n=1

I {At−1,n = ei} = XAM
t−1,i,

and since WT
t,ni are independent and identically distributed (iid), Equation (2.14) to (2.15) is due to the

Multinomial/Multinomial equivalence described in Equation (2.6).

The proof is completed since the initial values are known at time t = 0 for both the CM and the AM,

and we can use the recurrence relation for the proceeding steps.

Theorem 2.4 allows us to create stochastic CM-AM pairs given there is an underlying, “true” deterministic

CM with transition matrix D(t). This means that on average, both our stochastic CM and AM will look

like the true model, which can be useful if we want our models to have certain shapes.

2.4 Summary

In this chapter, we showed how AMs can fit into the CM statistical framework. We first showed an example

of the Kermack and McKendrick deterministic SIR-CM with a corresponding stochastic CM-AM pair. We

demonstrated through simulations that this CM-AM pair is jointly equal in distribution in terms of the

number of individuals in the S, I, and R states. The main idea behind this equivalence is that the sum of N

independent Bernoulli variables with a given probability p is equivalent in distribution to a Binomial draw

with size n and probability p.

We then showed that given a deterministic transition matrix D(t), we can create equivalent stochastic

CM-AM pairs. We proved this theorem with the use of the Multinomial/Multinomial equivalence, which

is an extension of the Bernoulli/Binomial equivalence. The Multinomial/Multinomial equivalence is that

the sum of N independent Multinomial variables drawn from a population of size 1 and probability p is

equivalent in distribution to a Multinomial variable from a population of size N and probability p.

The result of Theorem 2.4 is that we have an exact equivalence of CMs and AMs given an underlying

D(t). There is no need for limits or asymptotics as suggested by Eubank et al. (2010).

This chapter focuses on stochastic models with underlying model shapes given by deterministic transition

matrices D(t), which are directly analogous to the original K&M equations. Theorem 2.4 allows to put these

deterministic, discrete time models into a stochastic framework, which allows us to account for noisy data.

Theorem 2.4 relies on the independence of agents who are currently in the same state.
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However, we do not need D(t) to create equivalent stochastic CM-AM pairs, nor do we need independence

of agents. In Chapter 3, we explore conditions for equivalent CM-AM pairs when we relax or remove D(t)

and allow for dependency of agents within the same state.
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Chapter 3

General CM-AM equivalence

In this chapter, we relax the assumptions required in Theorem 2.4 required to create equivalent stochastic

CM-AM pairs. Specifically, we examine the assumptions of independence of agents and the reliance on the

underlying shape of the model given by a transition matrix D(t). Classically, epidemiological models were

built with a set of deterministic difference (or differential) equations in mind such as those of Kermack and

McKendrick (1927). Unsurprisingly, many stochastic models were developed to incorporate the deterministic

difference equations, usually in terms of expected value of the stochastic model (Daley et al., 2001). In

Chapter 2, we aimed to maintain the underlying shape of these deterministic difference equations by basing

our stochastic CM-AM pairs on the underlying transition matrix D(t) to put it more in line with the K&M

series of models.

In order to create equivalent CM-AM pairs in Chapter 2, we relied on having agents who occupy the same

state as being independent from one another. However, in epidemiology we know that such an assumption

is extremely suspect as there is evidence of sex, age, socio-economic factors in the spread of disease through

a population (Koide and Seno, 1996). In this chapter, we relax the assumptions used in the previous model

to create more general CM-AM pairs.

3.1 Base assumptions

Before relaxing assumptions for CM-AM pairs, we find it useful and natural to maintain the following

assumptions:

1. An individual/agent may belong to only one state at a given time, which means the number of agents

in states at a given time are non-negative integers. That is for t = 0, . . . , T ,

Xt ∈ ZK≥0.
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2. A CM is characterized by

(a) Homogeneity of individuals within states

(b) Homogeneous interaction between states of individuals in susceptible and infectious states,

3. An agent update in an AM is necessarily a conditional Multinomial draw of size 1, namely

At,n|At−1,pt−1,n ∼ Multinomial (1,pt−1,n) .

where pt−1,n is possibly a random variable dependent on the states of other agents.

Assumption (1) may seem strange because it in fact excludes common deterministic models such as the

K&M SIR-CM, which more often than not, gives fractional values for the number of individuals in a given

state at a given time. However, since we are modeling discrete data, we find this assumption of integer values

to be acceptable. Moreover, this does not mean that E[Xt] is a vector of non-negative integers.

Assumption (2) codifies the major simplification of CMs – homogeneity within states and homogeneous

mixing. This is what allows us to essentially consider an individual within a state to be the same as any other

individual within a state. Moreover, homogeneous mixing tells us that susceptible and infectious agents are

equally likely to interact and hence become infected.

Assumption (3) gives the structure of the most basic AM. An agent, given its previous state and

probability of moving, has some chance of moving to another state. This probability pt,n may itself be

a random variable. Since there is a bounded number of states to move to, then this new agent state,

conditioned on the previous states and pt,n is necessarily a Multinomial draw. As such, we can view

conditional Multinomial draws as the foundation of AMs.

The assumptions that we are relaxing include (1) requiring individuals within states to be independent

from one another, (2) requiring a CM to be given by a Multinomial draw, and (3) requiring both the

CM and AM movements from one state to the next to be determined by a deterministic transition matrix

D(t). Relaxing assumption (1) allows us to examine what it means for a group of individuals/agents to

be “homogeneous,” and we find that being independent from one another is a sufficient but not necessary

condition. Relaxing assumption (2) allows us more freely to model how a number of individuals within a

group move from one state to the next, which allows us to use models including Poisson draws, Binomial

draws where the probability of moving is a Beta random variable and other parametric or non-parametric

specifications (Daley et al., 2001; King et al., 2015). Relaxing assumption (3) allows modellers to rely on

functions other than K&M-style deterministic difference equations to specify the shape of the curve of the

number of individuals in each state over time.
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3.2 CMs have an AM pair

Given a (stochastic) CM, we can create a corresponding (stochastic) AM that has equivalent distributions

in terms of the number of individuals in each state.

Let there be a CM with initial states XCM
0 = x0 with K states given by

Zt,k|XCM
t−1,k ∼ Ft,k (3.1)

where Zt,k is a vector of non-negative integers of length K such that Zt,k1 = XCM
t−1,k. In words, random

variable Zt,k is a random draw from the number of individuals at time t−1 in state k, XCM
t−1,k and partitioning

them into the K states at time t based on CDF Ft,k.

The equivalent AM is given by the following,

A0,n = ek if

k∑
j=1

I {j > 1}X0,j−1 < n ≤
k∑
j=1

X0,j for k = 1, . . . ,K

At,n|At−1,pt−1,n ∼ Multinomial (1,pt−1,n) ,

where pt−1,n is constructed so that XAM
t,k

d
= XCM

t,k . To do this construction, for each state k, we take

realizations of Zt,k and permute the indices of the agents currently in state k, and assign the first Zt,k,1

permuted-order agents to state 1 at time t, the next Zt,k,2 permuted-order agents to state 2, and so on until

we have assigned all our agents for all previous states k. Mathematically, this has complicated notation.

First let Jt,k = {n : At,n = ek} be the set of indices of agents in state k at time t. Let σt,k be a function

σt,k : Jt−1,k → {1, . . . , Xt−1,k}

n→ σt,k(n)

that maps index n to a permuted value between 1 and Xt−1,k. Finally, let σt,k itself be a random permutation

drawn from all such permutations of size Xt−1,k, which we call Gt,k. Then pt−1 results from first obtaining

realizations of Zt,k and σt,k,

Zt,k|XAM
t,k ∼ Ft,k

σt,k ∼ Gt,k

pt−1,n,i =

 1 if
∑i
j=1 I {j > 1}Zt,k,j−1 ≤ σt,k(n) ≤

∑i
j=1 Zt,k,j

0 otherwise
(3.2)

33



By construction XCM d
= XAM , since we are selecting the number of agents/individuals moving from

one state to the next from the same random variable as in the CM, Zt,k. The permutation of the agents

is required because otherwise we would be able to distinguish between them, violating the assumption of

homogeneity within groups.

Example 3.2.1. (SIR-AM with and without permuting indices) In this example, we demonstrate how

two AMs can have equivalent distributions in terms of the number of individuals in each state but have

distinguishable agents.

Let there be a stochastic SIR-CM with model parameters shown in Figure 2.2: N = 1000, S(0) =

950, I(0) = 50), β = 0.10, and γ = 0.03. We would like to make a corresponding SIR-AM. One way to

generate an AM is to use the process described in Eq. (3.2), which we will refer to as the “permuted”

version. This is one of many ways to generate a corresponding AM for a given SIR-CM. We will also explore

one other way.

Instead of permuting the indices at each time step, we instead could assign the first Zt,i,1 agents who

are currently in state i to be in state 1, the next Zt,i,2 agents who are currently in state i to state 2, and

so on. An analogy to this is that we have a stack of agents in each state at time 0 where the agent at the

bottom of the stack has the smallest index. We use the SIR-CM at the next time step to select the number

of agents who will move from one state to the next. We select which agents move by moving them one at a

time: from the bottom of the stack of its current state and placing it on top of the stack of its next state.

We will refer to this assignment of agents as the “non-permuted” version.

Both the permuted and non-permuted match the SIR-CM with respect to the number of agents in each

state at each time. This is because the number of agents selected each at each time is based on a random

variable that is equivalent in distribution to that of the random variable used in the SIR-CM. However,

there is distinction in which agents move from one state to the next in the SIR-AM. For a SIR-CM to truly

have a matching SIR-AM, we require the agents to be homogeneous within states and have homogeneous

interaction. One way to express this requirement is through the property of exchangeability. That is for any

permutation σ and for any any agent kn who is currently in state k

P (At,k1 , At,k2 , . . . , At,kN |At−1) = P
(
At,σ(k1), At,σ(k2), . . . , At,σ(kN )|At−1

)
. (3.3)

This distinction is important because it can affect parameter estimation, especially in terms of uncertainty

estimation. We demonstrate this distinction with the examples shown in Figures 3.1 and 3.2.

To recap, we design two AMs that have equivalent distribution in terms of the number of individuals

in each state. In the first AM, the agents are made indistinguishable from one another by permuting the

order of the agents at each time step before moving agents from one state to another. In the second AM,

the agents are distinguishable as they move from one state to the next based on the original order they
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were put in the state. We show this scenario in order to show the importance of fulfilling the assumption of

homogeneity within states and homogeneous mixing when creating a corresponding AM for a given CM. If

this assumption is not fulfilled, we can have different estimates of disease parameters.

We demonstrate this difference in estimation of disease parameters in Figure 3.1. We plot the empirical

distribution of average time to infection for each of the 950 initially susceptible agents, which were simulated

for L=1000 runs. Time to infection is associated with the parameter β (along with the total number of

infectious individuals at each time step). Both the non-permuted and permuted AMs have the same sample

mean, approximately 44 days until infection. However, it is clear that the non-permuted version has a much

larger variance for time to infection than the permuted version. Intuitively, this can be explained that in

the non-permuted version, the first agent is going to be infected in the shortest amount of time and the last

agent in the longest time. In the permuted version, the initial ordering should not matter.
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Figure 3.1: We plot the average time to infection over L = 1000 runs for each of 950 initially susceptible
agents with β = 0.10 and γ = 0.03. In one set of simulations, we used the non-permuted version and the
other used the permuted-version.

In fact, the importance of initial ordering can be seen in Figure 3.2. For the non-permuted AM, we

see that Agent 1 (the agent at the bottom of the susceptible stack) has a much shorter time to infection

than agent 201, who has a much shorter time to infection than Agent 401, and so on. The probability of

infection from time 0 to time 1 decreases as n increases for each initially susceptible agent n = 1, . . . , 950.
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From this example, we see that the property of exchangeability shown in Eq. (3.3) is not being met for

the non-permuted version. Conversely, for the permuted AM, there is no distinguishable difference among

the distribution of time to infection for the different agents (see Figure 3.2 (bottom)), meaning that each

initially susceptible agent has the same probability of being infected at each time step.
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Figure 3.2: We plot the time to infection over L = 1000 runs for 5 specific agents with β = 0.10 and γ = 0.03.
In one set of simulations, we used the non-permuted version and the other used the permuted-version.

The takeaway is that if the AM we design to correspond to a CM does not have homogeneity within

states or homogeneous mixing, then we can easily misinterpret results from modeling. In the above example,

if we used the non-permuted AM, we would conclude that time to infection has mean 44 days (95% CI: [34,

54]) days compared to the permuted AM where we would conclude time to infection has mean 44 days (95%

CI: [40, 48]).

Example 3.2.2. (Lock-step) In this example, we relax the assumption that agents within the same states

are independent from one another. Agents in this setting will instead move together in “lock-step.” By

lock-step, we mean that if one agent moves from one state to another from time t− 1 to t, then the rest of

the agents within the same state at time t−1 will also move to that new state. Instead of being independent

of one another, agents now move through the epidemic in groups.
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We again illustrate this concept with the SIR disease-level states, this time a subset of the system,

which we call the S2IR2-system, shown in Figure 3.3. The S2IR2-system partitions the susceptibles into two

separate states and the recovered individuals into two separate states. The susceptible individuals may move

to a single infectious state and finally into one of two separate recovered (or removed) states.

I

S1

S2

R1

R2

Figure 3.3: Graphical depiction of how individuals within a S2IR2-system move through states.

A deterministic S2IR2-CM is given by the following set of discrete-time, first order difference equations

where the population size N is fixed,

∆S1(t)
∆t = −β1S1I

N

∆S2(t)
∆t = −β2S2I

N

∆I(t)
∆t = (β1S1+β2S2)

N I − (γ1 + γ2) I

∆R1(t)
∆t = γ1I

∆R(t)
∆t = γ2I

. (3.4)

In words, we have two distinct susceptible states (e.g. males and females) who have (possibly) different

rates of infection, β1 and β2. However, once infectious, the two groups become indistinguishable from one

another. Individuals within the infectious state then may either move into one of two “R” states (e.g. dead

or recovered) at rates γ1 and γ2, respectively. To complete the model specification, we assume all initial

states are known.

If we want to make equivalent stochastic CM-AM pairs where the agents in the AM are independent

and mimic, on average, the shape of the curve of the difference equations, we can apply Theorem 2.4. Here,

though, we would like to look at a “lock-step” situation, where individuals occupying the same state move

together at the same time. In contrast to the previous section, the two susceptible groups of individuals may

(or may not) be “locked” together in the I state. Once locked, the individuals within a state cannot unlock.

That said, it is possible for the groups of individuals in the two initial susceptible states to remain unlocked

throughout the entire epidemic. An alternative way to think of the lock-step model is weighting on the states

that appears when determining the ptn vectors but does not effect the number of agents transitioning.
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For completeness, we provide a simulation of the stochastic S2IR2 CM-AM with the underlying set of

discrete-time, first order difference equations described in Equation (3.4). Here, we set β1 = 0.25, β2 =

0.50, γ1 = 0.05, γ2 = 0.10. Additionally, N = 1000, T = 50, and (S1(0), S2(0), I(0), R1(0), R2(0)) =

(250, 500, 250, 0, 0). Both the CM and AM were run for 5000 simulations.

In Figure 3.4, we plot the average percentage of individuals at each time step in each of the states for

the CM (top) and the AM (bottom). Again, we see that the means for each percentage of individuals within

a state at a given time look the same for both the CM and AM. For these parameters, we see, on average,

nearly all individuals initially in S2(0) are infected but not so for the individuals initially in S1(0), which

corresponds to S1(0) having a smaller infection rate than S2(0). Similarly, groups of individuals are much

more likely to join the R2(t) recovered state than the R1(t) recovered state, about doubly so. However, we

note that it is not so much the underlying deterministic CM that is important but rather, the fact that given

the same underlying model that the stochastic CM and stochastic AM are equivalent in distribution. Figure

3.4 shows us that both the CM and AM have the same number of individuals in each state, on average.

In Figure 3.5, the corresponding sample variance of the number of individuals in each state at each time

step are plotted for each of the models, again for 5000 total simulations. We see in the simulation, that the

sample variances are similar although not exactly the same, which is similar to the case of the SIR-system,

which also did not have exactly equal variances. This is evidence that the variances converge more slowly

than the expectations at each time step. Additionally, the lock-step stochastic SIR is associated with larger

variances of the states due to the binary nature of either all individuals within a group moving to the next

state or staying in the current state. Given enough simulations, we would see these two lines completely

overlap. This figure shows that the CM and AM also have the same variance in the number of individuals

in each state.

Finally, we examine the distribution of sample paths in Figures 3.6-3.10 in order to see if the entire

distributions of number of individuals in each state are the same for the CM and AM. In Figure 3.6, we have

plotted the sample paths of the five states for both the stochastic CM (left) and stochastic AM (Right).

In Figure 3.6, it is not clear that the distributions of the sample paths are the same, due to the step-wise

movements of the lock-step model. As a result, the horizontal lines in the graphs are under-emphasized (as

we cannot see many plotted on top of one another) and the near-vertical movements are overemphasized (as

we see every transition even if occurred only once).

To better see that the distributions of the sample paths are the same for both the stochastic CM and

stochastic AM, we present Figures 3.7-3.10. In Figure 3.7, for the two susceptible states, S1t and S2t, groups

of individuals may transition at most once per simulation to the infectious state. The label in gray denotes

how many individuals are moving at each time step. We plot the distribution of times of transition for the

CM (left) and AM (right). We see that these distributions of times seem to be the same for the CM and

AM for both susceptible states.
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Figure 3.4: Top: CM approach. Bottom: AM approach. We plot the average percentage of individuals at
each time step in each of the five states, Ŝ1, Ŝ2, Î, R̂1, and R̂2. We set β1 = 0.25, β2 = 0.5, γ1 = .05, and
γ2 = 0.10. Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) = (250, 500, 250, 0, 0). Each model
was run for a total of 5000 simulations.
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Figure 3.5: Top: CM approach. Bottom: AM approach. We plot the variance of individuals at each time
step in each of the states. We set β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10. Additionally, N = 1000 and
(S1(0), S2(0), I(0), R1(0), R2(0)) = (250, 500, 250, 0, 0). Each model was run for a total of 5000 simulations.
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In Figure 3.8, we plot the distribution of transition times for the stochastic CM (left) and stochastic

AM (right) for the infectious state It. There are seven total combinations of values of change of the number

infectious, depending on whether groups are locked together or not. One of the most common cases of change

(-250) is when the initial infectious individuals recover before infecting anyone else or when initially infectious

individuals both infect the first susceptible state and recover in the same time step. Also commonly, we see

changes of 250 and 500, which means that the initially infectious individuals are infecting one of the two

susceptible states before recovering. We see instances of where one group of susceptibles is locked together

with the initial infectious due to instances of changes of -500 and -750, respectively. In these simulations, we

rarely see both groups of susceptibles locked together while the group of initially infectious individuals do

not recover (change of 750), and thus, even more rarely see a change of -1000, when all three groups would

move from the infectious state to one of the recovered states. We see that the distributions of change of

individuals at each time steps seem to be the same for both the stochastic CM and stochastic AM.

In Figures 3.9 and 3.10, we plot the distribution of transition times for the stochastic CM (left) and

stochastic AM (right) for the recovered states R̂1 and R̂2, respectively. Like in the infectious state, groups

may be locked together to have different values of changes into the recovered states. We see that in many

cases, the group of infectious individuals (of size 250) recover before infecting either group of individuals in

susceptible states, which is why the percent of change of 500, 750, and 1000 is small compared to changes of

250. Again, we see that the distributions of the states for stochastic CM and stochastic AM look the same

for both R1 and R2.

Overall, Figures 3.7-3.10 show that the distribution of transition times for groups of individuals from one

state to another are equivalent in both the stochastic CM and stochastic AM. Since the distribution of times

is derived from the number of individuals in each state at each time step, it is evidence that the CM and

AM have equivalent in distributions in terms of the number of individuals in each state.

This example shows agents do not need to be independent from one another to have equivalent CM-AM

pairs. We have demonstrated two extreme cases of dependency of individuals: (1) when the agents are

completely independent from one another and (2) when the agents are completely dependent on one another

(lock-step).

In reality, we expect the agents to have some dependency structure in between the two extremes. The

independent case and lock-step cases are important in that the AM versions fulfill the requirement of the

agents being homogeneous within states and having homogeneous mixing.

41



Figure 3.6: Top: CM simulation. Bottom: AM simulation. We plot the sample paths of the percent of
individuals within the five states at each time step t. There are 5000 sample paths for each state. Here, we set
β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10. Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) =
(250, 500, 250, 0, 0). Each model was run for a total of 5000 simulations.
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Figure 3.7: Left: CM simulation. Right: AM simulation. In the lock-step, stochastic S2IR2 CM and AM,
the groups of susceptible individuals in states Ŝ1(0) and Ŝ2(0) have a chance to transition to the infectious
state Î(t) at each time step. This transition will happen at most once since groups of individuals are locked
together. We plot the percent of transitions at time t for the 5000 simulations. The label in gray is the change
of individuals, meaning the susceptible states may move all 250 or 500 individuals, respectively, at each time
step to the infectious state. Here, we set β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10. Additionally,
N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) = (250, 500, 250, 0, 0). We run both models 5000 times.
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Figure 3.8: Left: CM simulation. Right: AM simulation. In the lock-step, stochastic S2IR2 CM and AM,
the groups of individuals are moving both into and out of the infectious state Î(t). We plot the percent of
transitions at time t for the 5000 simulations. The label in gray is the value of the change of individuals
within the Î(t) state at each time step. For example, -250 indicates that the group of initially infectious
individuals of state Î(0) recover or, less commonly, the group in state Ŝ1(0) has moved to the infectious
state at the same time the group of initially infectious individuals recover. Here, we set β1 = 0.25, β2 = 0.5,
γ1 = .05, and γ2 = 0.10. Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) = (250, 500, 250, 0, 0).
We run both models 5000 times.
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Figure 3.9: Left: CM simulation. Right: AM simulation. In the lock-step, stochastic S2IR2 CM and AM,
infectious individuals in state Î(t) have a chance to recover into one the recovered states, R̂1 and R̂2. We
plot the percent of transitions at time t for the 5000 simulations. The label in gray is the value of the
change of individuals within the R̂1(t) state at each time step. For example, 250 indicates that the group
of initially infectious individuals of state Î(0) recover or the group of initially susceptible individuals of
state Ŝ1(0) recover at a different time than the the group of initially infectious individuals. Here, we set
β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10. Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) =
(250, 500, 250, 0, 0). We run both models 5000 times.
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Figure 3.10: Left: CM simulation. Right: AM simulation. In the lock-step, stochastic S2IR2 CM and AM,
infectious individuals in state Î(t) have a chance to recover into one the recovered states, R̂1 and R̂2. We
plot the percent of transitions at time t for the 5000 simulations. The label in gray is the value of the
change of individuals within the R̂2(t) state at each time step. For example, 250 indicates that the group
of initially infectious individuals of state Î(0) recover or the group of initially susceptible individuals of
state Ŝ1(0) recover at a different time than the the group of initially infectious individuals. Here, we set
β1 = 0.25, β2 = 0.5, γ1 = .05, and γ2 = 0.10. Additionally, N = 1000 and (S1(0), S2(0), I(0), R1(0), R2(0)) =
(250, 500, 250, 0, 0). We run both models 5000 times.

3.3 Any AM has an equivalent CM

While in Section 3.2 we showed that any CM has an equivalent AM, in this section we show that we can

create a (stochastic) CM for a given (stochastic) AM. Let the AM have N agents and K total states. Let

the agent update be given by a conditional Multinomial draw of size 1,

At,n|At−1,pt,n ∼ Multinomial (1,pt,n)

pt,n|At−1 ∼ Ft,n

The issue in having a CM mimic an AM is the problem of homogeneity within states and homogeneous

interaction, which is closely related to the issue of dependent agents. In Section 3.2, we showed the lock-step

example where agents within states are completely dependent upon one another. Because the agents are

inseparable, it follows that they are homogeneous and have homogeneous mixing. Given a fixed number of

states, it is difficult to fulfill the requirements of homogeneity and interaction mixing unless the agents are

completely dependent or independent from one another. We can circumvent this issue instead by adding

more states to the model.

45



IS R vs.

I1S1 R1

I2S2 R2

...

INSN RN

Figure 3.11: Two extreme CM depictions for a population of size N with three fixed disease-level states,
SIR. On the left, there is one state for each disease-level state for a total of K∗ = 3 states. On the right,
there is one disease-level state for each agent for a total of K∗ = 3N states. For both models, we assume
homogeneous mixing and homogeneity of individuals within states.

We partition the K states of the AM into K∗ = KN states. That is, our new states are

XAM
t = (XAM

t,1 , . . . XAM
t,K , XAM

t,K+1, . . . , X
AM
t,2K , . . . , X

AM
t,(N−1)K+1, . . . , X

AM
t,NK),

where the first K states are the states for the first agent and the next K states are for the second agent and

so on. This partitioning is illustrated in Figure 3.11.

After partitioning the agents, simply let XCM
t = XAM

t . The CM and AM are jointly equivalent

in distribution by construction. We need only show that this CM has homogeneity within states and

homogeneous interaction. However, this is trivially true because there is at max one agent in every state at

a given time.

The reader may wonder what is the point of this equivalence as it may seem more like a “trick” than a

statistical result. This equivalence shows that CMs and AMs are exactly the same if we adjust the number

of total states, again without having to look at asymptotic behavior. This equivalence allows us to identify

1) the minimal number of parameters to be estimated in either framework and 2) that the main feature that

allowed us traditionally to discriminate between CMs and AMs (although they really are the same) is the

number of total states.
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3.4 Number of total states

Section 3.2 shows that every CM has an equivalent AM and Section 3.3 shows that every AM has an

equivalent CM. The key differences between these sections is the total number of states we allow in the

original model.

To better describe this issue, we define the concept of disease-level states. We define a disease-level

state as any symptom or condition related to disease alone that is not associated with any demographic

characteristics of agents, latent or otherwise. For example, the K&M deterministic SIR-CM has 3 disease-

level states, S, I, and R. If, for example, males and females become infected at different rates β1 and β2,

respectively, then it makes sense to partition the S disease-level state into two sub-states: SM and SF for a

total of K = 4 states. This example is illustrated in Figure 3.12.

IS R
β1 I γ1

I

SM

SF

R

β1 I

β2 I

γ1

Figure 3.12: Depiction of two different models within the disease-level states SIR. For the left model, there
are K = 3 total states. For the right model, there are K = 4 total states.

We refer to the model in Figure 3.12 (right) as the S2IR-CM. The equations for the S2IR-CM model are

given by deterministic transition matrix D(t),

D(t) =


S1(t− 1)− β1

I(t−1)
N 0 β1

I(t−1)
N 0

0 S2(t− 1)− β2
It−1)
N β2

It−1)
N 0

0 0 I(t)− γI(t− 1) γ

0 0 0 R(t− 1)

 (3.5)

If β1 = β2 = β then the two susceptible states have the same rate of infection as in the original SIR

model, and we can in fact model the population with K = 3 states.

In general, the question we need to focus on is how many total states K∗ do we need to model a population

given there are M -disease level states. We can bound K∗ using the results of Sections 3.2 and 3.3. Given

a fixed population N , then the minimum number of states required to model an outbreak of a disease is

M ≤ K∗ ≤ MN . In the next chapter, we will focus on techniques to determine whether K∗ is a proper

estimate of the total number of states and what that means in terms of our CM-AM pairs.
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3.5 Summary

In this chapter, we showed that any CM has an equivalent AM and that any AM has an equivalent CM,

regardless of whether there exists an underlying, deterministic transition matrix D(t).

In Section 3.2, we show there exists an AM pair for any CM with K states. We then examine the

assumption of (in)dependence of agents. In the first example, we show that we can design an AM that

is equivalent in distribution in terms of the number of individuals in each state to the CM and have the

agents be distinguishable from one another. We show that having the agents being distinguishable from

one another can, however, effect parameter estimates. In the lock-step example, we show an extreme case

of dependency where agents within the same state are dependent on one another but still indistinguishable

from one another.

In Section 3.3, we show how to create a matching CM for a given AM. In order to create a matching CM,

we increase the number of total states in order to maintain homogeneity within states and homogeneous

mixing of individuals.

Finally, in Section 3.4 we discuss the importance of the CM-AM equivalency, and in particular the number

of total states used to model an outbreak. As the total number of states is directly related to the number

of parameters needed to be estimated in either framework, it is key to find the minimum number of states

that will adequately model an outbreak.

The equivalence between CMs and AMs in this section allow us to directly relate the parameters within

the two frameworks. Thus, we can use established statistical techniques to estimate parameters for CMs

and then transfer them over to the AM in framework. Once in the AM-framework, we can then examine

hypothetical scenarios knowing how well it is docked to reality.

In the next chapter, we discuss techniques to determine K∗ and to test whether our model, which may

have a complex agent interaction structure, is a good fit to the data we observe.
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Chapter 4

Model selection for CMs and AMs

In Chapter 3, we showed that if we adjust the number of total compartments K, then it is always possible

to create an equivalent CM (AM) in terms of joint distribution of the number of individuals in the K states

for a given AM (CM). The size of K is directly related to the number of parameters we need to estimate.

For a fixed population N , and assuming every state is associated with at most one parameter θk, then there

will be K−1 parameters to estimate. In order to estimate the simplest model possible (i.e. the one with the

fewest number of parameters), we would like to determine K∗, the minimum number of total states required

to adequately model an outbreak of a disease.

Once K∗ is estimated, we can determine the “best” model with K∗ states to select our CM-AM pair.

We call the selected model a CM-AM pair to emphasize that the CM and AM are equivalent in terms of

joint distribution, although we may view and analyze the two classes separately. Through the perspective

of a CM, we can estimate our parameters and provide uncertainty estimates for them. We can then shift

our perspective to that of an AM, where we can more easily explore hypothetical questions such as effects

of shutting down schools or implementing isolation and quarantine strategies for our agents.

In this chapter, we explore methods to find K∗, the minimal number of total states needed to adequately

model an outbreak. To this extent, we provide two novel diagnostic plots that are specific to the SIR

disease-level states to aid in model selection. Additionally, we introduce a statistical investigation similar to

that of Colizza et al. (2006) to determine K∗ while working with the SI disease-level states. All coding,

calculations, estimations, and simulations mentioned here are implemented in our R package catalyst

available at https://github.com/shannong19/catalyst.

This chapter proceeds as follows. In Section 4.1 we present two novel diagnostics in the form of plots to

determine whether our model is a good fit. Following that, in Section 4.2, we show how we can use statistical

simulations to determine if we can simplify our model to one with fewer total states, K∗. Finally, in Section

4.3 we summarize the chapter.
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4.1 SIR specific selection

SIR disease-level states were originally included in Kermack and McKendrick (1927) model, and models

with SIR disease-level states and are still commonly used to assess and examine infectious disease outbreaks

(Rizkalla et al., 2007; Zhao et al., 2013; Smith and Broniatowski, 2016; Mpeshe et al., 2017). The SIR model

with K∗ = 3 total states contains two disease parameters θ = (β, γ), the infection rate, and recovery rate,

respectively. In this section, we present two novel diagnostic plots to be used to help assess the fit of the

model and inform model selection. We show how a recent advancement in the deterministic SIR-CM can be

used to formulate the deterministic K&M SIR-CM in a form more recognizable to statisticians which results

in a plot useful in model assessment. Additionally, we present a separate ternary plot as a diagnostics tool

for fitting SIR disease-state models.

4.1.1 The SIR and its relationship with linear regression

Harko et al. (2014) reduce the deterministic K&M 2-dimensional differential equations to 1-dimension.

Specifically, they show that

S(t) = S(0) exp

{
−R0

R(t)

N

}
, (4.1)

where R0 = β
γ is the reproduction number for the deterministic K&M SIR. Recall, R0 is the average number

of secondary infections caused by a primary infection when the primary infection is introduced to a fully

susceptible population (Anderson and May, 1992). In Eq. (4.1), the number of new susceptibles is based on

exponential decay of the initial susceptible population where the decay is determined by the reproduction

number R0 and the current percent of recovered individuals, R(t)
N . We adapt this deterministic equation to

account for noise by replacing the deterministic variables with random variables (St, and Rt). Rearranging

the terms and taking a log transformation, we have

log

(
St
S0

)
= −R0

Rt
N
. (4.2)

The equation in Eq. (4.2) is useful because it is in the form of standard linear regression, i.e. data that

can be fit to a straight line through the origin.

We simulate SIR data from our Binomial movement model presented Eq. (2.2) and plot the results in

Figure 4.1. We display the results of simulating 100 runs from the SIR-CM. In this figure, it is apparent that

the variance of Rt

N is not homoskedastic but increases as Rt increases. The best-fit weighted linear regression

line is shown in red with a 95% prediction interval shown in black. To estimate the weights, we first estimate

the σ̂2
t = V

[
log
(
St

S0

)]
as a straight line through origin as a function of Rt/N .
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Figure 4.1: Simulations of SIR-CM with best-fit line (red) from weighted linear regression and 95% prediction
interval from weighted least-squares linear regression.
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For the weighted least squares regression model where we use the data points from all the different

simulations to form our estimates, we estimate R̂0 = 3.400 (95% CI: [3.397, 3.403]) whereas the true

R0 = 3.33. Our estimate of the reproduction number along with its 95% CI does not include the true value

of R0, but we see that the prediction interval covers the simulated data well.

Estimating the variance σ̂2
t directly from the data is only a viable strategy when we have multiple sample

paths, which typically does not occur in epidemic data. At best, we will observe (St, Rt) for t = 0, . . . , T ,

meaning we will only have one sample path. We do, however, have an expression for the variance of St, in

Eq. (2.4) and so can use the delta method to obtain an estimate for V [log(St/S0)]. Namely, when St > 0,

V [log(St/S0)] ≈
[

1

St

]2

V [St] (4.3)

Given an estimate of β̂, the average infection rate, which is necessary for the plug-in estimate of V [St], we

can then use weighted least squares regression with the weights as the inverse of Eq. (4.3). We randomly

select one sample path from Figure 4.1 and fit a weighted regression line with the weights as the plug-in

estimate for 1/V [log(St/S0)]. This line and a 95% percent prediction interval are plotted in Figure 4.2. We

estimate R̂0 = 3.40 (95% CI: [3.31, 3.39]). We repeat the process for the other L− 1 sample paths and find

that the average estimate of R0 is R̄ = 3.35, and the true R0 is only covered 28% of the time. However, the

coverage of the data (i.e. the sample paths are contained within the 95% prediction interval) is 95%.

Fortunately, the model is not very sensitive to our estimate of β̂, which is required to estimate the plug-in

variance V [St] shown in Eq. (4.3). The data coverage is plotted as a function of β̂ in Figure 4.3. We vary β̂

between 0 and 1 and find the mean coverage of the data over L = 100 simulations, averaging over each of the

the sample paths. The horizontal line is the 95% line, as we expect our 95% prediction intervals to cover the

data 95% of the time. Our coverage is as expected unless we underestimate β̂. Even when we underestimate

β̂, the coverage is over 94% except for values of β̂ < γ, the average recovery rate. The threshold β̂ = γ

is important because it is the value between observing an outbreak or not in the deterministic K&M SIR

equations.

Overall, we see that plots like the one in Figure 4.2 can be used to assess whether a stochastic SIR-CM

is a good fit to the observed SIR data, as we expect the slope of the best fit line to fit the points fairly well,

although perhaps an overestimate of R0, and we expect approximately 95% of the observations to be covered

in the prediction interval. In the future, we will investigate adding an additional intercept parameter to our

model which would allow us to estimate S(0) instead of assuming it is known.
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Figure 4.2: Single simulation of SIR-CM with best fit line (blue) and 95% prediction interval from weighted
least-squares linear regression with the weights as the inverse of the plug-in estimate of Eq. (4.3). The slope
of the line is also the estimate of R0 = 3.40
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estimate the weights for weighted linear regression.

54



●
●

●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●
● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

R

I

S

0 5 10 15 20 25

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Time

%
 o

f I
nd

iv
id

ua
ls

Color ● ●Example Other

β = 0.98; γ = 0.35
Simulation observations

●
●

●

●

●

● ●
●

●

●
●

●
●

●
●●●●●●●●●●●

S = 41, I= 27, R= 32

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

IS

R

Color ● ●Example Other

β = 0.98; γ = 0.35
Simulation observations

Figure 4.4: Observed SIR data simulated from the model in Eq. (2.2) with β = 0.98 and γ = 0.35. Left:
% of individuals in state vs. time. Right: ternary plot of % in S, I, and R states. The point in purple is
highlighted to show how the same point is represented in both plots.

4.1.2 Ternary plots

Since St + It + Rt ≡ N and St, It, Rt ∈ [0, N ], plotting St, It, and Rt in three dimensions results in the

observed data points lying in the plane constrained to the triangular region defined by St, It, Rt ∈ [0, N ]. A

ternary plot is then a natural way to display all three states simultaneously in two dimensions. Safan et al.

(2006) present ternary plots for the SIS (which can be equivalently be displayed as an SIR model) as a way

to show theoretical endemic equilibria from deterministic SIS differential equations. To our knowledge, the

ternary plot has not been used as a visual diagnostic for model fitting and selection of an SIR model to data.

We demonstrate the concept here. We let S(0) = 950, I(0) = 50, and R(0) = 0. We simulate a set

of observed data from the Binomial movement model in Eq. (2.2) with β = 0.84 and γ = 0.30 for times

t = 0, . . . , T . The observations are plotted in Figure 4.4 in the traditional view of % in state vs. time (left)

and the ternary plot (right). We highlight a point in purple to show how the same point, in this case the

point (St = 41, It = 27, Rt = 32) is displayed in each plot. We see that the visualization the outbreak in the

ternary plot is condensed to one point corresponding to (St, It, Rt). Although we do lose the time dimension

in the ternary plot, we can visualize time in the ternary plot by using a color gradient for the observations.

The ternary plot maintains primary features of the visualization such as monotonicity of the S and R states

along with visibility of the peak of the infectious curve.
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Figure 4.5: Observed SIR data simulated from the model in Eq. (2.2) with β1 = 0.98 and γ1 = 0.35 and a
second set with β2 = 0.70 and γ2 = 0.25. Left: % of individuals in state vs. time. Right: ternary plot of %
in S, I, and R states. The black points are from set 1 and the purple points from set 2.

In fact, the loss of the time dimension in the ternary plot can even be seen as an advantage, in some

aspects. For example, viewing the % of individuals in states vs. time is dependent on the scale for time

which can effect how “serious” the outbreak looks at a glance. In this regard, the ternary plot allows for a

standard way to view the severity of the infection. Second of all, we can identify outbreaks that have a similar

reproduction number R0 = β
γ provided the initial conditions are similar and on average, the observations

are drawn from a SIR model with K∗ = 3 states (i.e. the individuals act homogeneously).

For example, let S(0) = 950, I(0) = 50, and R(0) = 0. We simulate a set of observed data from the

Binomial movement model in Eq. (2.2) with β1 = 0.84 and γ1 = 0.30 for times t = 0, . . . , T and a second set

of observed data from the Binomial movement model in Eq. (2.2) with β2 = 0.70 and γ2 = 0.25 for times

t = 0, . . . , T . Note that for both sets of observed data, R0 = 2.80. We plot the traditional plot (left) and

ternary plot (right) in Figure 4.5. Looking at the traditional view, there is no way to determine if the R0

values for the two sets of observations are similar from looking at the observations alone. However, in the

ternary plot, the observations are almost superimposed on one another and so we know from the plot alone

that the outbreaks have similar values of R0. The ternary plot allows us to identify outbreaks with similar

R0 values regardless of the value of β and γ.

Moreover, using the ternary plot we can visualize our estimate of the S, I, and R states along with

point-wise confidence regions. For example, assume we have S, I, and R values from the Binomial movement
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Figure 4.6: Observed SIR data simulated from a S2IR Binomial movement model with β1 = 0.8, β2 = 0.30,
and γ = 0.20. Our estimate of the model is β̂1 = β̂2 = 0.5 and γ̂ = 0.2. Left: average % of individuals in
state vs. time as the line and the ribbon is the 95% pointwise marginal confidence intervals. Right: average
% in S, I, and R states and 95% pointwise confidence regions.

model with D(t) defined in Eq. (3.5). This is the model with two groups of susceptibles (e.g. males and

females) who have different rates of infection β1 and β2, respectively and have the same rate of recovery γ.

Let β1 = 0.8, β2 = 0.30, and γ = 0.20. Let our estimate of the model be β̂1 = β̂2 = 0.5 and γ̂ = 0.2. Our

observations and estimates are plotted in the traditional view (left) and the ternary view (right) in Figure

4.6. Generally, in both views we see that most of the points are contained the confidence intervals/regions.

However, we can only see joint confidence regions in the ternary plot. This allows us to see that we begin

to systematically overestimate the number of infectious and the number of recovered in later stages of the

epidemic. Although we can see this systematic overestimation in the traditional view as well, it is more

apparent when we can view all 3 dimensions with a single point.

The ternary plot, as implied by its name, is limited to displaying three dimensions. However, we are still

able to partition the individuals into M groups and have a maximum of 3M total states in our stochastic

SIR-CM or SIR-AM. As such, we can still incorporate heterogeneity of individuals into our SIR model and

be able to assess the aggregate SIR totals using the ternary plot.

In our above example we looked at two susceptible groups of individuals with different infection

parameters, β1 and β2. Opposed to the log-linear plot, we can still assess the fit of our model for multiple

groups of S, I, or R states. In Figure 4.7 we plot two separate ternary plots for our two groups of susceptibles

along with our estimates for each of the groups. In this view, it is clear we do not fit the data well as we are
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Figure 4.7: Observed SIR data simulated from a S2IR Binomial movement model with β1 = 0.8, β2 = 0.30,
and γ = 0.20. Our estimate of the model is β̂1 = β̂2 = 0.5 and γ̂ = 0.2. We plot the average % in S, I, and
R states and 95% pointwise confidence regions for each of the two groups using ternary plots.

underestimating the number of infectious for the first group and overestimating the number of infectious for

the second group.

Additionally, this idea may be extended to the SEIR disease-states using a three dimensional plot where

the points are limited to a space within a tetrahedron where each side is of length 1. We will pursue this

idea in the future.

In summary, the ternary plot allows us to view SIR epidemics in a standard way which allows us to

more easily compare outbreaks that have different time scales. Moreover, important values such peak of

infections tend to be emphasized in the ternary plot because the three dimensions are viewed as a single

point. Additionally, joint confidence regions can be plotted on a ternary plot which cannot be done with the

traditional view.

4.2 A statistical investigation for SI disease-level states

To introduce this concept, we begin with a small example. Unlike Chapter 2, we use an even simpler example

than using SIR disease-level states. We study an example with only SI disease-level states. For these disease-

level states, individuals either belong to the susceptible (S) or infectious (I) states at a given time. Once

a susceptible individual becomes infectious, he will remain infectious. Here, we will use 0 to denote the S

state and 1 to denote the I state. Like in Leventhal et al. (2013), models using SI disease-level states are
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sometimes used to model diseases such as HIV, since there is no recovery. Using only two disease-level states,

however, is often deemed to be too simple to model real situations. The “canonical” deterministic SI model

is used mostly for its nice mathematical properties, at least with respect to the original deterministic SI-CM

continuous time differential equation, which has a closed form solution (see Daley et al. (2001)),

dS

dt
= −ρS (N − S)

=⇒ S(t) = N − (N − S(0))N

(N − S(0)) + (N − S(0))e−ρNt
.

The model we study is generated from the following SI-AM for a fixed population of size N , T evenly

spaced time points, I(0) initially infectious individuals, and probability of infection per contact with an

infectious individual ρ, and Jt,n the number of infectious contacts agent n has at time t, and σ(A0), a

random permutation of the vector A0. Let Wt,n denote a random Bernoulli variable and the agent update

be given by,

Wt,n ∼ Bernoulli
(
1− (1− ρ)Jt−1,n

)
At,n|At−1 =

 Wt,n if At−1,n = 0

1 if At−1,n = 1
(4.4)

In contrast to the AMs presented in Chapter 2- 3, we randomly assign, with equal probability, one agent to

be initially infectious, which is why we require the random permutation of A0.

The probability argument for the Bernoulli random variable Wt,n can be explained by the fact that it

is the probability of receiving the infection from at least one of the infectious contacts. This probability

of transition shown in Eq. (4.4) is similar to the original Reed-Frost Chain Binomial presented in Abbey

(1952).

In words, in this AM one agent is randomly assigned to be the initial infector and the remaining agents

are assigned to be susceptible. A susceptible agent has an equal probability ρ of receiving the infection from

an infectious contact between time step t − 1 and time t. Thus, the probability of a susceptible agent n

becoming infectious from time t−1 to t is dependent on the number of infectious contacts of agent n at time

t− 1, Jt−1,n. Infectious agents will remain infectious for the duration of the epidemic.

We run simulations from the AM in Eq. (4.4), and the results of the simulations are shown in Figure 4.8

(left) for N = 1000, ρ = 0.003, T = 50, I(0) = 1 and Jt,n = It for all n. In this plot, we display the average

percent of susceptible (blue) and infectious (red) at each time and a 95% CI. Note that the CIs are smaller

for both the percent of susceptibles and the percent of infectious at both the beginning and the end of the

outbreak.
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Figure 4.8: Results from simulations of Eq. (4.4) with N = 100, ρ = 0.003, T = 50, and I(0) = 1. The red
horizontal line corresponds to the 95% coverage line, which is the amount of coverage we expect given our
95% prediction intervals. The red vertical line corresponds to the value 0.03, which is the value of the true
recovery rate, γ, which is a point of equilibria in the K&M deterministic SIR equations.
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The scenario of the number of infectious contacts of each agent being the total number of infectious

agents Jt−1,n = It−1 implies homogeneous interaction of the susceptible and infectious agents. Because of

this homogeneous interaction of agents, we can then write an equivalent stochastic SI-CM with K = 2 total

states that has equivalent distribution to the AM in Eq. (4.4) in terms of the number of individuals in each

state, namely the SI-CM with

Zt|St−1 ∼ Binomial
(
St−1, 1− (1− ρ)N−St−1

)
St|St−1 = S(t− 1)− Zt.

In general, if the susceptible agents interact homogeneously with the infectious agents, then it is straight

forward to find our equivalent stochastic CM. The question is whether we can just as easily find our equivalent

stochastic CM when the agents begin to interact heterogeneously.

Take, for example, the agent contact structure in Figure 4.9 (left), where each vertex represents an agent

and an edge between two agents represents a contact between the pair. In this contact structure, each agent

contacts every other agent at time t for all t. More specifically, each susceptible agent contacts each infectious

agent at time t and hence has the same probability of becoming infectious. This situation corresponds to

Jt,n = It.

Once we have this agent contact structure, we can vary heterogeneity of agent interaction by removing

edges between vertices, which is equivalent to taking away contacts between pairs of agents. In Figure 4.9

(right), we have taken one of the 10 agents and removed the edges to all other agents except for one. The

remaining nine agents still have complete contact among one another. We call the situation in which N − 1

agents have complete connections and the remaining agent only has one connection the “9/1” network.

We now let Jt,n be the number of infectious contacts agent n has at time t according to the the agent

contact structure in Figure 4.9

Jt,n = # {m : At−1,m = 1 and agent n contacts agent m} . (4.5)

The simulations produced for Eq. (4.4) for N = 100, ρ = 0.003, T = 50, I(0) = 1 and Jt,n from Eq. (4.5)

are shown in Figure 4.8 (right). In the figure, we see although the mean curves for the two states are similar

to those of the complete network, the CIs are different, especially close to the beginning and the end of the

epidemic.

In summary, we have described two SI-AMs that differ only by their underlying agent contact structure

which determines whether the interactions of agents are homogeneous or not. The complete model

has homogeneous interaction among agents whereas the nearly complete model has some heterogeneous
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Figure 4.9: Example of a complete graph (left) and a “9/1” graph for N = 10 agents.

interaction of agents because of two agents (the one with only one contact and the agent is connected to

every single agent).

In Figure 4.8, we see that the average number of individuals in each simulation is about the same for

both the complete and 99/1 model (since there are now a total of N = 100 agents). The CIs for the number

of individuals in each state is smaller for the complete network than the 99/1 network, notably when T is

close to 50. Because these figures are so similar to one another, it makes sense to ask the question does

d(SC , S99/1) < ε for some threshold ε, d is some distance function, SC is the number of susceptibles at each

time t from the complete network, and S99/1 is the number of susceptibles at each time t from the 99/1

network. In other words, are the the distributions of the number of susceptibles in each model similar enough

to one another? If we determine that the distributions are, indeed, close enough then we can model the 99/1

agent contact structure with K∗ = 2 states as opposed to K∗ = 6 (2 SI states for the 98 agents who are not

connected to agent, 2 SI states for agent 2 who is connected to agent 1, and 2 SI states for agent 1 who is

only connected to agent 2).

Example 4.2.1. For example, in the 9/1 in Figure 4.9 (right), we may think that if the initial infectious

agent is equally likely to be any agent then the fact that the network is not complete will not influence

the spread of the outbreak very much. We can quantify this with a statistical investigation. Let C be
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the superscript for the complete network and 99/1 be the superscript for the 99/1 network. We want to

investigate d(T (SC), T (S99/1)) < ε, where I0 = 1 and the initial infectious agent is chosen uniformly at

random from the set of agents and T (Sk) is a statistic of Sk. This means we need some similarity or

distance function to compare the two distributions. More importantly, we need to know how to interpret

the magnitude of the distance between the two distributions. In this example, we will use the 5th the 95th

percentiles of our estimate of ρ (p2.5, p97.5) and ε = .0001. To be clear, we know the distributions are not

the same and that is not the question we are trying to answer. We, instead, want to use the distance as a

measure of how much the distributions differ.

The process for this investigation is to fix ρ and the agent contact structures for the complete and 99/1.

Then we

1. Generate L data sets, assuming the first contact structure i

2. Estimate ρ̂i` for ` = 1, . . . , L assuming homogeneous interaction of agents (e.g. a SI-CM with K = 2

states)

3. Set F̂ i as the empirical distribution of ρ̂i`

4. Repeat for the other contact structure j

We then use the Euclidean distance between the two sets of percentiles for our estimate of ρ. We demonstrate

this with the estimated ρ̂ values from simulations of the complete and nearly complete graph in Figure 4.10

with L = 100 simulations. For the most part, the estimates of ρ look to have a similar distribution. For

the nearly complete network, we see an observation of ρ̂ = 0 which can be attributed to when the initial

infectious agent was the agent who was connected to only one other agent.

Complete Nearly Complete

0.000 0.001 0.002 0.003 0.000 0.001 0.002 0.003
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Figure 4.10: Estimates of ρ̂ from simulating an SI outbreak from a complete agent network GC (left) and
a nearly complete agent network GNC (right). In both simulations, the initial infectious agent is chosen
uniformly at random.
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The distance is d = 6× 10−5 < ε and so we may conclude that the two models are similar enough for our

purposes. In turn, we could model the population with K∗ = 2 states. That is, we determine that SC and

S99/1 are similar enough to one another that we accept the small differences in distribution for simplicity of

the model with fewer parameters.

The benefits from being able to estimate a nearly complete agent interaction structure with a complete

interaction structure include (1) reducing variance in our estimates (which we explore more in Ch. 9), (2)

computational and memory speed-ups from treating agents as indistinguishable from one another, and (3)

model simplification.

That said, there are some difficulties in this process, which include (1) possibly having to estimate θ, the

vector of disease parameters; (2) selecting an adequate CM; and (3) having to choose a meaningful distance

d, a statistic T , and threshold ε. In the next chapter, we focus on issues (1) estimating θ and (2) selecting

an adequate CM. With regards to issue (3), the SI disease-level states represent a contrived example as it

only has two disease-level states, S and I, and subsequently one disease parameter, ρ, and so it easier to

select a meaningful distance, statistic, and threshold. Additionally, in the example we provided the true

distributions of SC and S99/1 are not equivalent. In this case, we would likely accept the slight difference

in distribution in order to have a simpler and more efficient model. Future work in this area will focus on

quantifying the difference between the empirical distributions and what constitutes an acceptable difference.

4.3 Chapter summary

In this chapter we present visual diagnostics and a statistical investigation to aid in selection of a stochastic

CM-AM pair with K total states when the fixed disease-level states are either SIR or SI. As ultimately we

want to infer information about a disease, it is important to choose a model that fits the observed data well.

We examine ways to choose K∗, the minimal number of states needed to adequately model a CM/AM pair

which include examining the interaction structure of agents and visual diagnostics.

To improve model selection, we present two novel ways to visualize observed and estimated data for

SIR disease-level states. The first is a log-linear formulation of the model, which is derived from using the

result of Harko et al. (2014) that reduces the two-dimensional continuous time differential equations for the

deterministic SIR model into a one-dimensional equation. This, in turn, indicates how to transform our raw

SIR data into the form of simple linear regression through the origin where R0, the reproduction number,

corresponds to best-fit line. When using weighted linear regression where the weights are the inverse of the

estimated plug-in variance from Eq. (2.4), we can generate prediction intervals that cover 95% of the data

and is robust to our choice of β. As such, the log-linear plot and 95% prediction interval can be used as a

check to see whether a stochastic SIR model with K∗ = 3 states is a good fit for data.
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The second visualization we present is a ternary plot for SIR disease-level states. This plot can be used

to assess the fit for K∗ ≤ 3M total states where M is the number of groups in which we partition the

individuals. We present an example in Figure 4.7. Not only does the ternary plot allow us to visualize all

three dimensions of the data (SIR) at once, we can also plot 95% pointwise CRs and color observations by

time. As such, the ternary plot provides a very flexible way to visualize SIR data, regardless of homogeneous

interaction of agents.

The next method we present to aid in selection of the minimal number of states is specific to the SI

disease-level states. This method answers the question of whether a population is homogeneous “enough”,

in the sense that a stochastic SI-CM with K∗ = 2 total states can be used to model the population. We

present a method to use to compare estimated ρ values from a non-homogeneous interaction of agents model

to one with homogeneous interaction. Our small example shows a case where a population with one outlier

individual that does not interact homogeneously with the rest of the population can be adequately modeled

with a homogeneous model. The upshot of this method is that the complexity of a model can be reduced

greatly if we assume homogeneous interaction, which in turn can increase the interpretability of the model

and also be involved in practical speed-ups as simulation time is greatly reduced. The method we present is

limited to the SI disease-level states due to the difficulty in selecting a distance, a statistic, and threshold to

compare our models to one another.

In the next set of chapters we will use some of the methods presented in this chapter along with more

traditional model selection techniques (such as MSE and AIC) to analyze two historical outbreaks: measles

in Hagelloch, Germany (1861-1862), and Ebola in Western District, Sierra Leone (2014-2017).
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Chapter 5

Measles: model selection

In Chapters 2 and 3 we discussed conditions needed to have equivalent stochastic CM-AM pairs, and in

this chapter we apply that theory and methodology to real data. More specifically, we examine data from a

measles outbreak in 1861-1862 in Hagelloch, Germany. Our goals in this analysis are to:

1. Identify groups of individuals that behave differently from one another

2. Determine the minimal number of states K∗ needed to generate a stochastic CM-AM pair

3. Estimate parameters for our CM-AM pair

4. Estimate R0 and compare to other measles outbreaks

5. Use our paired AM to implement hypothetical scenarios and prevention policies.

In this chapter, we will focus on issues (1)-(4) and in Chapters 6-7, we will examine issue (5) in depth.

After introducing the data set, we begin our search for adequate CM-AM pairs. To do so, we first fix

disease level-states. Here, we decide on the SIR disease-level states, for reasons discussed below. Once

the disease-level states are fixed, we can focus on finding a minimal number of states, K∗, and ultimately

find the corresponding states associated with such a model and estimate disease parameter estimates to

use in our paired AM. To do so, we examine a variety of models and modeling assumptions. To assess

our models, we look at both quantitative and qualitative methods including mean square error, (MSE) the

Akaike information criterion (AIC), and three diagnostic plots, two of which are novel. Finally, we use our

best estimates to address the question of what the value R0 is in this outbreak.

This chapter proceeds as follows. In Section 5.1, we introduce the Hagelloch data set and conduct

exploratory data analysis (EDA). In Section 5.2, we provide the reasoning behind our models, the

methodology used to fit them, and our resulting assessment of the best models. Finally, in Section 5.3

we summarize the findings in this chapter.
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5.1 Data and EDA

Before we address issues (1)-(4), we introduce the data set. Despite being over 150 years old, this data set is

still relevant today because (1) measles is still relevant (Stobbe, 2019; Balser, 2019), (2) the data set provides

a good testing ground for methodology due to feature rich data and the small, isolated nature of the village,

and (3) many features of the data set are very applicable to modern models including spatio-temporal and

network analysis Liu et al. (2015a); Lessler et al. (2016); Groendyke and Welch (2018). We give a high

level overview of the data along with some exploratory data analysis (EDA), and more EDA is available for

interested readers in Appendix A.

The Hagelloch data was initially collected by Pfeilsticker (1863) and further analyzed by Oesterle (1992).

The data set follows the course of a measles epidemic in Hagelloch, Germany from October 30, 1861 (Day

0) until January 24, 1862, covering a period of 87 days. Figure 5.1 shows a satellite image of current day

Hagelloch.

Figure 5.1: Current day satellite image of Hagelloch, Germany

Along with mumps, rubella, and varicella, measles is a highly infectious childhood disease. Symptoms of

of the disease include high fever, cough, runny nose, and red, watery eyes. Two to three days after initial

symptoms, tiny white spots may be found in the mouth. Three to five days after the symptoms begin, a

rash appears on the body. A high fever (104 degrees F or more) may also be observed. Finally, the rash and

fever resolve after a few days (Centers for Disease Control and Prevention, 2018).
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Table 5.1: Subset of data from the surveillance package in R. The time of initial infectiousness (Time I)
and initial recovery (Time R) are imputed in Salmon et al. (2016) from the recorded symptom appearances.

ID Surname Age Sex Time I Time R Infector ID

1 Mueller 7 Female 22 30 45
2 Mueller 6 Female 24 32 45
3 Mueller 4 Female 29 37 172

45 Goehring 7 Male 12 18 184
184 NA 13 NA 0 11 NA

Measles is transferred from person to person through contaminated air or an infected surface. Centers

for Disease Control and Prevention (2018) reports that a person is infectious four days before and after

the appearance of the rash. Measles is perhaps the most contagious person-disease on the planet, with a

reproductive number estimated of around R0 = 19 (Anderson and May, 1992), which means that when an

infectious person is introduced to a fully susceptible population, she will infect on average 19 others. In fact,

a seven year-old boy in the Hagelloch data set purportedly infected 30 other individuals. However, more

recent estimates of R0 for measles are closer to 6-7 (Getz et al., 2016).

This Hagelloch data set, available from the surveillance package in R, includes 188 cases of measles

out of 568 total inhabitants (Salmon et al., 2016). Neal and Roberts (2004) argue that the 188 cases were

the only such individuals who were susceptible to the disease due to an outbreak 14 years prior. We also

will maintain that argument and therefore use N = 188 as the total susceptible population.

The data collected is feature rich, especially considering the fact that epidemic data is typically not

publicly available due to privacy concerns. All reported cases in the data set experienced the measles rash.

The data set includes sex, age, class level (preschool, 1st class, or 2nd class), household ID, and location

(x, y coordinates), date of first appearance of symptoms and duration of early symptoms, date of measles

rash, unique family ID, purported infector ID, time of death, and other complications such as bronchitis. A

subset of the data is displayed in Table 5.1.

In many ways, this data set is ideal for testing and analyzing methodology for the spread of infectious

disease. The village is small and fairly isolated with a fairly homogeneous population in terms of ethnicity

and socio-economic status. A strong argument exists that the only susceptible people in the population are

the 188 children who did become infected since measles typically occurs during childhood. Furthermore, we

have household location, household ID, sex, age, and class as features of our children which lends itself to

spatio-temporal modeling. In terms of network structure, class and household structure are features that

can be used to estimate social networks. Moreover, the purported source of infection is reported for 184 out

of the 188 children which allows us to analyze the spread of infection over a network.

As previously mentioned in Chapter 3, in order to examine CM-AM pairs, we need to first decide on

which disease-level states to use in our models. Besides, the S and I states, it makes sense to have a R state
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in which individuals can move to over time, as individuals either recover and are no longer susceptible or

die from measles. The original data has date of first symptoms (prodromes) along with the appearance of

the rash date. From this, Salmon et al. (2016) impute the time of infection and time of recovery for each

individual based on the estimates in Neal and Roberts (2004). We use the imputed time of infection and

time of recovery times, as recorded in the surveillance package in our analysis.

We plot the number of susceptible, infectious, and recovered children over time in Figure 5.2. In the

figure, we see that the number of susceptible children is non-increasing and the number of recovered children

is non-decreasing, as we would expect. However, we note that there are two local maxima for the number of

infectious children, the first around November 25 and the second around December 5. In this analysis, we

show that the first maximum is unlikely to be attributed to random noise. The existence of multiple maxima

in terms of the number of infectious individuals makes us question whether it is appropriate to fit a stochastic

SIR-CM to the data because under the the deterministic SIR-CM, the number of infectious necessarily has

one maximum. While the stochastic SIR-CM is more flexible than its deterministic counterpart and can

account for infectious curves with more than one maximum, it gives us reason to believe that the agents in

this data set may either have differences in susceptibility to measles, differences in mixing with other agents,

or both.

We analyze whether the spatial location of the households affects the spread of the disease. In the original

data set, the x and y location of the children was plotted on a 250×250 m2 grid. Unfortunately, it is unknown

how this grid overlays with the current map of Hagelloch displayed in Figure 5.1. In Figure 5.3, we plot the

household locations from the grid and color the children in the household by class. As we can see from the

figure, most of the households are located on on the right side of the grid, with a few outliers on the left.

Additionally, quite a few households have more than one infection recorded. The median number of total

infections per household with at least one infection is three and the mean is 3.36 infections. There are three

households with eight infected children.

Of the 184 infections where the alleged infectee was recorded, 90 infectors belonged to the same household

as the infectee. This means that sibling-sibling disease transfer accounts for nearly half of the spread of the

disease. Overall, we find household and class features account for over 90% of the spread of the disease.

5.2 Modeling, likelihood, and parameter estimation

In Section 5.1 we looked at possible driving forces of the resulting measles outbreak, and in this section

we examine different models to adequately model the outbreak. The ultimate goal is to obtain parameter

estimates to use in our paired stochastic CM-AM. We must first select one or more models.

We limit our models to those with the disease-level states SIR due to the nature of how measles is spread

and data limitations. For example, although an exposure state where the agent is infected but not yet
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Figure 5.2: The number of susceptible, infectious, and recovered children over time.
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infectious may be relevant, we have little to no data to assess this. For the fixed level disease-states of SIR,

there are two sets of sufficient statistics we can work with depending on which modeling view we take and

depending on whether we consider individuals as homogeneous within states. We call the first statistic, when

the individuals are homogeneous in states, X, and the second, when the individuals are heterogeneous or

distinguishable, U. Once we have our sufficient statistics (data), we can then calculate the likelihood of our

stochastic CM, which is dependent on the total number of state K∗. Finally, to estimate our parameters,

we maximize the likelihood of our models. To compare our models to one another, we look at both mean

squared error (MSE) and Akaike Information Criterion (AIC) (Wasserman, 2004) as quantitative measures

and three diagnostic plots as qualitative measures.

We summarize the process of how we select our models below.

1. We transform our data into two sets of summary statistics.

• The statistic X is the number of susceptible, infectious, and recovered individuals at each time

step and is used in models that assumes individuals are homogeneous and indistinguishable

from one another.

• The statistic U details when each individual becomes infectious and recovers and is used in models

that assumes individuals are heterogeneous and distinguishable from one another.

2. We determine which agents behave similarly and thus can be grouped together.

• We use basic statistical clustering methods to examine which agents behave similarly.

• We also examine differences of agents based on time of infection.

3. We use the groupings found to identify models, estimate parameters, and compare the models, and

select the best one(s).

• We compare the models quantitatively with MSE, AIC, and R0 estimates.

• We compare the models qualitatively using visual diagnostics.

5.2.1 Sufficient statistics

The first step is to organize the data into sufficient statistics. How we view the data and subsequently

calculate the likelihood of the models may change depending on how the data are collected and whether we

can distinguish between individuals. The first set of sufficient statistics is

x = {xt : (xt,1, . . . xt,K) for t = 0 . . . , T} , (5.1)
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Table 5.2: Turning the raw Hagelloch data of Table 5.1 into a sufficient statistic X based on the number of
susceptible, infectious, and recovered at each time point. A subset is shown here.

Day xt,1 xt,2 xt,3

10 183 4 1
20 175 7 6
30 116 53 19
40 15 92 81
50 1 11 176

which is the number of agents in each state k for k = 1, . . . ,K for times t = 0, . . . , T , given there are K total

states and the total population size is fixed. An example of this statistic is given in Table 5.2.

For the SIR disease-level states with K = 3 states, we look at (xt,1, xt,2, xt,3), the number of individuals

in the susceptible, infectious, and recovered states, respectively at time t. We assume that the individuals

update according to the stochastic CM in Eq. (2.2), which is based on Binomial draws. We are interested in

the likelihood of θ = (β, γ), conditioned on the number of individuals at the previous time step,

L(θ;x) =

T∏
t=1

P (Xt = xt|Xt−1 = xt−1, θ)

∝
T∏
t=1

[pt(θ)]
xt−1,1−xt,1 (1− [pt(θ)])

xt,1 γxt,3−xt−1,3 (1− γ)
xt−1,2−(xt,3−xt−1,3)

(5.2)

where the specification of pt(θ) is based on one of two possible models. The first specification (i) pt(θ) =

β
NX2(t−1; θ) corresponds to the deterministic Kermack and McKendrick formulation of an SIR model. The

second specification (ii) pt(θ) =
(

1− β
N

)X2(t−1;θ)

is taken from the framework of chain Binomial Reed-Frost

models (Abbey, 1952). If β is small, then the two expressions are approximately equivalent. Note that both

these probabilities pt(θ) are deterministic as X2(t, θ) is the deterministic number of infectious individuals at

time t as a function of θ.

If we consider the agents to be heterogeneous/distinguishable from one another then a sufficient statistic

consists of an agent’s initial state, the maximum time the agent was still susceptible, and the maximum time

the agent was still infectious,

u =
{
un = (a0,n, t

∗
1,n, t

∗
2,n) for n = 1, . . . N

}
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where

t∗1,n = min

{
max

t=1,...,T
{t : At,n = 1} , T

}
(maximum time susceptible)

t∗2,n = min

{
max

t=1,...,T
{t : At,n = 2} , T

}
(maximum time infectious).

In this way, we can track the states of individuals over time, as opposed to using X, where we only know

the aggregate number of individuals in each state at a given time. The likelihood is then dependent on the

initial state of the individuals where I {·} is the indicator function of its arguments,

L(θ;u) =

N∏
n=1

P (Un = un)

=

N∏
n=1

(
I {A0,n = 1}

[
P (Un = un|t∗1,n < t∗2,n < T ) + P (Un = un|t∗1,n < t∗2,n = T ) + P (Un = un|t∗1,n = T )

]
+ I {A0,n = 2}

[
P (Un = un|t∗2,n < T ) + P (Un = un|t∗2,n = T )

]
+ I {A0,n = 3}) , (5.3)

with

P (Un = un|t∗1,n < t∗2,n < T ) =

t∗1,n∏
t=1

(1− pt(θ))

 · pt∗1,n+1(θ) · (1− γ)t
∗
2,n−t

∗
1,n+1 · γ

P (Un = un|t∗1,n < t∗2,n = T ) =

t∗1,n∏
t=1

(1− pt(θ))

 · pt∗1,n+1(θ) · (1− γ)T−t∗1,n+1

P (Un = un|t∗1,n = t∗2,n = T ) =

[
T∏
t=1

(1− pt(θ))

]
P (Un = un|t∗2,n < T ) = (1− γ)T−t∗2,n+1 · γ

P (Un = un|t∗2,n = T ) = (1− γ)T−t∗2,n+1, (5.4)

where we assume t∗1,n and t∗2,m are independent of one another when n 6= m, in order to have a

computationally tractable model. The likelihood may seem complicated but is simply partitioned by possible

states an agent may move to (or not) over the course of an epidemic. An example of a subset of the U sufficient

statistic from the Hagelloch data set is shown in Table 5.3.
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Table 5.3: Turning the raw Hagelloch data of Table 5.1 into a sufficient statistic U based on the initial state,
infection date, and recovery date of each individual. A subset is shown here.

ID a0,n t∗1,n t∗2,n

1 0 22 30
2 0 24 32
3 0 29 37

45 0 12 18
184 1 0 11

Table 5.4: Result of K∗ = 3 SIR model fits to the Hagelloch data.

Model No. pt(θ) Suff. Stat Fit β̂ β̂ − 2SE(β̂) β̂ + 2SE(β̂) γ̂ γ̂ − 2SE(γ̂) γ̂ + 2SE(γ̂) Log Like. MSE

1 KM X LL 0.279 0.263 0.295 0.100 0.086 0.113 -1247.767 1190.633
2 RF X LL 0.279 0.263 0.295 0.100 0.086 0.114 -1248.237 1203.439
3 KM U MSE 0.278 0.276 0.281 0.089 0.086 0.091 NA 1107.003
4 RF U MSE 0.275 0.273 0.278 0.090 0.087 0.092 NA 1116.495
5 KM U LL 0.279 0.263 0.295 0.099 0.086 0.113 -1247.872 1190.408
6 RF U LL 0.279 0.263 0.295 0.100 0.086 0.114 -1248.343 1203.155

5.2.2 Model fitting and parameter estimation – finding K∗

In order to find K∗, the minimum number of states to adequately model the Hagelloch epidemic, assuming

the M = 3 SIR disease-level states, we fit a number of models to the observed data.

We first determine whether the minimum number of states of K∗ = 3 (one S, I, and R state for the

entire population) is adequate. If so, we can assume that the population mixes homogeneously. We fit six

different models. The models are fit using one of maximizing the likelihood in Eq. (5.2) with sufficient

statistic X, maximizing the likelihood of Eq. (5.3) with sufficient statistic U, or minimizing the mean square

error where the “truth” is taken to be the deterministic K&M difference equations as a function of β and

γ. For each of these fit methods, we use both the probabilities pt(θ) of becoming infectious, the Kermack &

McKendrick (KM) and Reed-Frost (RF) formulation, respectively. For the sample error of the parameters,

we use a numerical estimate of the variance using the second derivative of the log likelihood for (β, γ), i.e.

the observed Fisher Information. For the MSE, we use the inverse Hessian of the optimized parameters as an

estimate of the covariance matrix. The results of model fitting are displayed in Table 5.4, and the estimated

fits alongside the observed values are shown in Figure 5.4.

The models in Table 5.4 yield β̂ ≈ 0.28. The log likelihood fit models yield γ̂ ≈ 0.10 whereas the MSE

yields γ̂ ≈ 0.09. The log likelihood for the the four methods using that method to fit the data ranges between

-1249 and -1247. The MSE for the methods fit by MSE have a smaller value than the log likelihood methods

by an order of 10, and the MSE methods unsurprisingly having the smallest MSE. However, the root MSE

only differs by approximately one person.

The fitted models plotted alongside the observations in Figure 5.4 are very similar to one another although

models 3 and 4 (the MSE fit methods) seem to have more striking differences compared to log likelihood fit
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Figure 5.4: Model fits for K∗ = 3 to the Hagelloch measles data.
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models. We see none of the models fit the observed data particularly well (see Figure 5.4). This is especially

apparent for the infectious state and the number of recovered individuals at the end of the outbreak.

We can also view our results using ternary plot as described in Chapter 4. We display the results of the

same methods used in Figure 5.4 in Figure 5.5. In this coordinate system, the two peaks in the observed

data infectious curve in Figure 5.4 become even more apparent. It is clear that the SIR model estimates

do not fit the data well, especially after day 30. We also see a more apparent difference between the set of

models 3 and 4 (the MSE fit methods) and the set of models 1, 2, 5, and 6 (the log likelihood fit methods).

Finally, we can view our estimates in the log linear formulation, according to Eq. (4.2). In this

visualization, we would expect, on average, that our transformed variables would form a straight line whose

slope corresponds to R0, the reproduction number. The data and estimates are plotted in Figure 5.6. The

model estimates form straight lines, which is what we would expect given the structure of the models because

the expected value of each state in the models is equal to the number of individuals in each state in the

deterministic K&M difference equations. None of the models seem to fit the observed data particularly well.

In this view, we can see that the R̂0 estimates for the log linear fits are close to 2.80 (95% CI [2.73, 2.88]

for Model 1) and for the MSE estimate are closer to 3.12 (95% CI [2.94, 3.26] for Model 7). Notably, both

of these estimates for R̂0 are much less than 19, which was the estimate for measles but is still fairly large

relative to other disease R̂0 estimates for other diseases such as influenza and Ebola as reported in Anderson

and May (1992).

In fact, throughout this entire chapter we will see that our largest estimate of the reproduction number

R̂0 is about 5 and so the reader may wonder why there is such a large discrepancy between this and the

Anderson and May estimate. One possible explanation is that the susceptible population is equal to a subset

of the village population rather than the entire population. Another possible reason is that in the raw data,

one child is purported to have infected 26 classmates out of 28 classmates, which is an influential event.

Finally, Getz et al. (2016) estimate R0 =5-6 in a more recent epidemic outbreak in India.

We can also model the observed data using the weighted linear regression through the origin estimate,

according to the equation in Eq. (4.2) where we weight each point by the inverse of its estimated variance.

The linear regression estimate is not a generative model as Rt and St are both random variables. That

said, we can still use it learn about the outbreak. This weighted linear regression model is plotted in Figure

5.7. Compared to the model estimates in Figure 5.6, the weighted linear regression line seems to fit the data

much better and the 95% point-wise prediction interval covers the points well. Intuitively, it makes sense

that the prediction interval increases in width over time.

With the weighted linear regression model, we estimate R̂0 as 4.94 (95% CI: [4.68, 5.21]), which is

substantially larger than the R̂0 estimates from the models in Figure 5.6. If the model did follow the SIR

formulation with K∗ = 3, then we would expect the weighted linear regression estimate of R̂0 and the

estimates from our models to be very similar, but this is not the case here.
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The regular, ternary, and log linear visualizations allow us to see different features of the data and our

model estimates over time. The regular view, in Figure 5.4 allows us to show the model fit for each of the

three different states where time is the x-axis. However, it is difficult to assess the model fits as a whole as

opposed to state-wise.

The ternary view in Figure 5.5 emphasizes the bimodal infectious curve and shows that the SIR model

estimates do not fit this bimodal structure well. Conversely, it is more difficult to visualize time in this view,

which is important because points may have similar locations in the ternary plot that occur at different time

points. With the ternary plot, we see more striking differences between the MSE-fit and the log likelihood-fit

models.

Finally, the log-linear estimates in Figure 5.6 are poor fits to the data. Again, it is more difficult to

visualize time in this view. Moreover, the weighted linear regression estimate in Figure 5.7 has a much

higher estimate of R̂0 than the other models but seems to fit the data much better.

Overall, the three visualizations show that the K∗ = 3 SIR model is a poor fit to the Hagelloch data.

Therefore, we need to explore different groupings within the population of Hagelloch.

5.2.3 Models for when K∗ > 3

While in the previous section we determined that K∗ = 3 was not a sufficient number of states to adequately

model the outbreak of measles, in this section we examine models with K∗ > 3 total states, which are found

by partitioning the population into sub-groups. While K∗ = 3 is the lower bound for the total number of

states needed to model the population, the other extreme is K∗ = 3N states, which corresponds to an S, I,

and R state for every agent in the population. We use the other extreme of K∗ = 3N to guide our search

for the optimal number of states.

For K∗ = 188× 3, we fit (βn, γn) for the following n = 1, . . . , 188,

arg max
(βn,γn)n=1,...,N

L ((βn, γn)n=1,...,N ; ,U1, . . . ,UN ) = P (Un = un, . . . ,UN = uN )

= P (X)

N∏
n=1

P (Un = un|X) (5.5)

where P (Un = un) is defined in Eq. (5.4). Initially, we use ptn(θ), a non-random variable, as the probability

of infection where

ptn = βn
I(t)

N
, (5.6)

where I(t) =
∑N
n=1X2n(t) is the total, expected number of infectious individuals at time t. We then must

jointly estimate (βn, γn) for all n, which is a difficult optimization problem. Instead, we assume X is known
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(i.e. we use the aggregate un as X = x). This allows us to maximize P (Un = un|X) independently from

one another. The results of this estimation are shown in Table 5.6. The results are summarized in Table

5.4, Model 7, and the individual estimates of (β̂n, γ̂n) are plotted in Figure 5.8.

The parameter estimates are shown in Figure 5.8. The estimates have mean (β̄n, γ̄n) = (0.54, 0.13) with

Σ̂ =

 0.11 −0.001

−0.001 0.001

 .

Looking at Figure 5.8, the density of (βn, γn) seems multi-modal and so the mean is not a good summary

of the distribution. The total log likelihood is -1165. If we adjust for the number of parameters estimated

(188× 2− 1) then the AIC is -2× 1540. We use these parameter estimates to guide our search for K∗.

To recap, we estimate individual (β̂n, γ̂n) parameters for each agent and plot the results as β vs. γ in

Figure 5.8 along with the 2D density estimate. In this graph, we see two groupings of β and γ estimates. We

find that this grouping has a close correspondence to the more natural split of clustering individuals whether

they were infected before day t = 25, as shown in Figure 5.8. The grouping of being infected before or after

day t = 25 is displayed on the original household grid in Figure 5.9.

As a result, we focus on models where we use this natural partition of whether agents were infected

before or after day t = 25. We also find a difference in agents before and after day t = 15 so we explore

that partition as well. In general, we assume there are G groups of individuals where if an agent belongs to

group g then it has parameters (βg, γg). To find estimates of (βg, γg), we maximize the likelihood

(β̂g, γ̂g)g=1,...G = arg max
(βg,γg)g=1 ...,G

L((βg, γg)g=1,...,G;UG1 , . . . ,UGG
) (5.7)

where UGg
refers to the set of U statistics for the agents either belonging to group g or interacting with

agents in group g. In Equation (5.7), we typically set UGg
= U, meaning that agents in group g interact

homogeneously with the rest of the population. However, we can also set UGg
so that it corresponds to only

a subset of the population. For example, if we subset UGg to only the agents belonging to group g, then we

only use agents in group g to calculate ptg(θ),

ptg(θ) = βg
IGg (t)

NGg

,

where IGg
(t) refers to the number of infectious individuals in Gg at time t and NGg

is the total number of

agents in group Gg.

The model with both the maximum log likelihood and minimum AIC is model 11 which has K∗ = 9

states, G = 3 groups and a log likelihood of -1041. The number of parameters estimated in model 11 is 11

(six for (βg, γg), two for split 1 and split 2, and three for UGg
), which brings the AIC/2 to 1052. We see
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Table 5.5: Table of log likelihood and AIC for models with different K∗. Model 1 refers to Model 1 in Table
5.4. Model 7 is the model where all agents have their own (βn, γn). Models 8 and 9 refer to models where
(βn, γn) = (β1, γ1) if the time of infection is before t = 25 and (βn, γn) = (β2, γ2) if the time of infection is
after or on t = 25. Models 10 and 11 refer to models where (βn, γn) = (β1, γ1) if time of infection is before
t = 25, (βn, γn) = (β2, γ2) if time of infection is in t = [15, 25), and (βn, γn) = (β3, γ3) if time of infection is
in t ≥ 25.

Model UGg
K∗ Log Like. # Pars. AIC/2

1 All 3 -1248 3 1251
7 All 564 -1165 396 1561
8 All 6 -1236 7 1243
9 Group g 6 -1103 8 1111

10 All 9 -1229 9 1238
11 Group g 9 -1041 11 1052

Table 5.6: Result of K∗ ≥ 3 SIR model fits to the Hagelloch data.

Model Random pt UGg
Split 1 Split 2 β̂1 SE(β̂1) γ̂1 SE(γ̂1) β̂2 SE(β̂2) γ̂2 SE(γ̂2) β̂3 SE(β̂3) γ̂3 SE(γ̂3)

1 N All NA NA 0.279 0.008 0.100 0.007 NA NA NA NA NA NA NA NA
8 Y All tI < 25 NA 0.426 0.035 0.102 0.017 0.228 0.014 0.092 0.008 NA NA NA NA
9 N Group g tI < 25 NA 0.303 0.016 0.097 0.012 0.569 0.023 0.125 0.010 NA NA NA NA

10 N All tI < 15 tI < 25 0.700 0.254 0.310 0.056 0.452 0.043 0.084 0.014 0.244 0.015 0.097 0.009
11 N Group g tI < 15 tI < 25 0.348 0.068 0.087 0.034 0.657 0.032 0.111 0.015 0.569 0.023 0.125 0.010

that the two models (models 9 and 11) with UGg
subset to group g have a much smaller log likelihood than

their counterparts with UGg
as all agents. This is to be expected, because in order to fit the models with

completely separate sub-groups, we must set the initial number of infected individuals as known. As such,

it is not fair to compare the completely separate group models to the others. However, estimates in these

models can be still used to learn about a population such as by conditioning the model on the first, e.g.

t = 25 days worth of observations.

We plot the estimates in a ternary plot in Figure 5.10. The ternary plot shows that K∗ = 3 is not a good

fit at all, but K∗ = 6 and K∗ = 9 are comparable to one another. We also see that only when we assume

we have heterogeneous interaction of agents (models 9 and 11), do we see the models better fit the points.

We see these two best estimates with a 95% CI (Models 9 and 11) plotted in Figure 5.11. In particular, we

see that model 9 fits the data very well.

Since the partitions are intuitive, i.e. it is reasonable to believe the population behaved differently before

and after t = 25 days, the model log likelihood is relatively large, and especially because the model estimates

in Figure 5.10 seems to fit the observed data well, we decide to use the parameter estimates in Models 8 and

9 in our paired stochastic AM.

In particular, for model 8 we estimate the R0 values for the two groups as 4.17 (95% CI: [3.89, 4.46])

and 2.49 (95% CI: [2.37, 2.62]). For model 9 we estimate the R0 values for the two groups as 3.13 (95%

CI: [2.94, 3.31]) and 4.57 (95% CI: [4.41, 4.72]). This means that depending on whether we consider our
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Figure 5.11: Number of agents in each state vs. time, faceted by the aggregate S, I, and R states respectively.
The model estimates and their 95% point-wise CIs are shown along with the original observations.
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groups of agents to interact homogeneously or not at all has a large role in determining our estimates of how

infective measles is. In fact, which group is more infective depends on this assumption.

Moving forward, we will use the estimates from both models 8 and 9 which correspond to the SIR-disease

level states with K∗ = 6 total states. Model 8 assumes of the homogeneous interaction of the sub-groups of

agents whereas model 9 assumes that the groups of agents only interact with those in the same group.

One may wonder why we are using time of infection to partition the agents as this was not known a

priori. In the data, we do know there is an event that occurred around day 25 where purportedly one

student infected 26 of his classmates, which we believe is an influential event.

We note that the models we are selecting are possibly not the “best” models, and future work will be

dedicated to selecting optimal parameters. However, due to both the “common sense” and statistical reasons

mentioned above, we believe that models 8 and 9 adequately capture the necessary population interactions

needed to spread the measles through the population. In the next chapter, we will examine hypothetical

scenarios where we implement prevention methods into the population.

5.3 Chapter summary

In this chapter, we looked at a data application for our stochastic CM-AM pairs, the Hagelloch measles

outbreak of 1861. The outbreak consists of 188 cases over the course of ∼90 days. Using our theory

presented in Chapters 2 and 3, we select two SIR-CMs that adequately model the epidemic. In the next

two chapters, we use the parameters estimated here in our stochastic CM-AM pair to consider hypothetical

issues such as reducing the infectivity of a disease and school closures.

Specifically, in this chapter: we (1) identify different sub-groups of agents, (2) determine the minimal

number of states needed to create CM-AM pairs, (3) estimate parameters, and (4) estimate R0, the

reproduction number.

To identify different sub-groups of agents, we conduct EDA on the data set, which is publicly available

online via the R surveillance package. We look at the agents in terms of their infection and recovery

times, spatial characteristics, and demographic characteristics such as which school class the child belongs

to. From this, we ascertain that the SIR disease-level states are most appropriate to model the data due to

both scientific knowledge of how measles is transferred and practical limitations in the data.

With our disease-level states fixed, we then determine what is our best K∗ value, the minimum number

of states required. We study a variety of models for K∗ = 3, which is the case when we assume that the

population interacts homogeneously and agents are homogeneous within states. We use two formulations for

estimates of probability of infection, study two sufficient statistics that can be used to estimate parameters

(distinguishable vs. indistinguishable agents), and two methods of parameter estimation: maximum

likelihood and maximizing the sum of square error. We find that (1) these models result in similar
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estimates for SIR curves and (2) none of these methods fit the data very well. We assess (1) and (2)

using both quantitative and qualitative diagnostics. Especially for issue (2), we introduce ternary and log-

linear formulation plots designed specifically to assess the SIR model with K∗ = 3 states. Using these, we

can definitively claim that the K∗ = 3 is not an adequate number of states to adequately model the outbreak.

We then use the results from K∗ = 3 models to help us guide our search for the best K∗. In particular,

since the K∗ = 3 models yield very similar results, we confine our remaining models to using log likelihood

fits, distinguishable agent sufficient statistics, and the K&M probability of infection formulation. We first

look at the other extreme K∗, when K∗ = 188 × 3, which corresponds to having a a S, I, and R state for

each agent. In this model, we estimate individual infection and recovery parameters, (βn, γn). We then

cluster the (βn, γn) plots and find that by splitting the agents at time of infection before and after day t = 25

corresponds to the groupings that emerge in the plot well, and note that there may be another partition of

the agents at infection time t = 15. As such, we explore models where K∗ = 6 and K∗ = 9 which corresponds

to dividing the population into 2 and 3 groups, respectively.

We explore models with K∗ = 6, 9 looking at cases where the groups of agents interact homogeneously

and where the groups of agents have no interaction outside their sub-groups. We find that both quantitatively

and qualitatively, having two groups (K∗ = 6) of agents outperforms having K∗ = 3 states and K∗ = 188×3

states. The models with K∗ = 6 states also have comparable results to K∗ = 9 models, despite having a

larger AIC. As a consequence, we determine that K∗ = 6 is an adequate number of states to model the

epidemic. In particular, we find that when we consider the sub-groups to be separate from one another, we

have a particularly good fit in terms of our visual diagnostics. We will explore both selected models and

their CM-AM pairs in the following chapters.

Finally, we assess the value of R0 for this measles outbreak. As a population estimate (i.e. when we

consider all agents to interact homogeneously and have the same rates of infection and recovery), we estimate

R0 = 4.94 (95% CI: [4.68, 5.21]), which is smaller than other R0 estimates for the measles but is still very

large overall compared to other diseases (Gallagher et al., 2019) and is in line with a more recent estimate of

R0 from Getz et al. (2016). When assuming there are two sub-groups of agents that interact homogeneously,

we have estimates of R0 for the two groups of 4.17 (95% CI: [3.89, 4.57]) and 2.49 (95% CI: [2.37, 2.62]),

respectively. When we assume the two sub-groups of agents that are considered to have completely separate

interactions, we estimate the R0 values for the two groups as 3.13 (95% CI: [2.84, 3.41])) and 4.35 (95%

CI: [4.23, 4.48]). Either way, we see evidence of a difference of infectivity of the measles in the two groups.

However, which group is more infectious than the other depends on how we assume the population interacts.

In the next chapter, we will use the above parameter estimates in our CM-AM pair. We will use this

CM-AM pair to address questions such as what would have happened if the infectivity of the disease was

reduced, what if infected households were isolated, and what if schools were closed.
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Chapter 6

Measles: reducing infectiousness

6.1 Introduction

In Chapter 5, we used the observed data in the 1861-1862 Hagelloch measles outbreak to estimate disease

parameters and two corresponding (simple) agent-interaction structures. Now, we use these estimated

parameters to examine hypothetical scenarios, the results of which policy makers could use to plan responses.

We examine the results of three hypothetical scenarios using our stochastic CM-AM pair:

1. Reduction of the total infectivity disease parameter(s) (β̂k)

2. Isolation and quarantine of agents to their households

3. School closure based on a threshold of infectious individuals.

In this chapter, we examine issue (1) in depth, and in the following chapter we examine issues (2) and

(3). We split results of the CM-AM in this way because the first issue is more of an abstract concept whereas

the second and third issues are concrete prevention measures to be implemented.

There are many ways a modeller could answer the above questions, using many different models, but an

accessible and flexible way to examine all three scenarios with one model is through a stochastic CM-AM

pair. Since AMs are based on “verbal argumentation,” they are easier to understand to the non-computer

or data scientist compared to more mathematical models (Epstein, 2007).

As we mentioned, the reduction of the infectivity disease parameter(s) β̂k is more abstract than the other

two issues which involve more tangible prevention methods. The idea behind this analysis is to examine

possible outcomes of “broad-stroke” prevention measures, regardless of what they may be. Results of this

analysis may be presented in the form of statements such as if we can reduce the purported infectivity

parameter by x±Cx%, we expect to see a y±Cy% reduction in the final size of the outbreak. As such, this

analysis of β̂k can be used directly in risk and cost analysis. In the following sections we will
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1. Formulate and describe how our CM-AM is changed to simulate prevention strategies

2. Examine homogeneous as well as heterogeneous agent interactions for the models selected when β̂k is

reduced at times t = 0 and t = 25

3. Determine how, generally, the homogeneous model changes when β̂k is reduced at different times.

6.2 Reducing the infectivity parameter β̂k

Recall, β̂k, is associated with the probability of infection. In the Reed-Frost equations, it is exactly the

probability of obtaining an infection from an infectious individual. In the K&M equations, β × I(t)
N is the

probability that a susceptible individual will become infectious from one time step to the next. As such, a

reduction in β will directly lead to a smaller chance of infection and R0.

The parameter β may be reduced through a variety of disease prevention and intervention routines:

vaccinations, isolation and quarantine, school shut downs, and awareness campaigns (Chen and Jamil, 2006;

Grefenstette et al., 2013; Lima et al., 2015; Henao-Restrepo et al., 2017). Agent-based modelers and epidemic

modelers, in general, are interested in sensitivity analysis of parameters such as β (Lash and Fink, 2003;

Epstein, 2007; Capaldi et al., 2012).

We begin using our stochastic CM-AM pair docked with our estimates β̂k, γ̂k obtained from Chapter 5.

We then scale β̂k according to the tuning parameter ρ ∈ [0, 1]. This analysis is asking the question: if we

reduce our estimate of β̂k to ρ · β̂k, then how would the resulting epidemic change? We analyze this question

now.

In Chapter 5, we selected two sets of parameters for two different models corresponding to K∗ = 6 total

states: the first set, which assumes that the population interacts homogeneously and the second set, which

partitions the population into two sub-populations that have no cross-partition interaction. We will also

consider conditioning on the first 25 days of data, as this the natural partition for the two sub-populations.

In general, it is possible (and in fact likely) for interventions to be implemented mid-outbreak. We analyze

the result of the epidemic for different days when first reduce β̂k, which corresponds to interventions being

implemented on different days.

To summarize the results of our simulations, we examine (1) peak infectious percent, (2) day of peak

infectious percent, (3) final size of the epidemic (i.e. the total number of individuals infected throughout

the course of the disease), and (4) infection duration, which are commonly used to measure the severity of

diseases (Nishiura and Chowell, 2009; Brooks et al., 2015). The first two summaries represent the “worst”

part of the epidemic, the day when the most agents are infectious, and the percent of the population that is

infectious on that day, respectively. These worst parts result in heavy burdens on the population including
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schools, workplaces, and healthcare facilities. The last two summaries look at how long the epidemic affects

the population and how much of the population is infected, respectively.

6.2.1 Analyzing the epidemic from time t = 0 onward

We first examine the stochastic CM-AM pair where the agents are separated into two groups with different

infection and recovery rates but interact homogeneously with one another. Group 1 is associated with

(β̂1, γ̂1) = (0.43, .10) and group 2 is associated with (β̂2, γ̂2) = (0.23, 0.09). We consider the initial states

to be known, meaning that one agent in group 1 is infectious at time t = 0 and the remaining agents are

susceptible. We use our R package catalyst to simulate the results of the stochastic CM-AM pair. We scale

the β̂k values by ρ for ρ = 0.1, , 0.2, . . . , 1.0 and run the AM for each set of scaled parameters for L = 1000

simulations.

We plot summaries of the simulations in Figure 6.1. In each of the three figures, the x-axis is the peak

% of infectious agents. The (x, y) observations are plotted along with an ellipse where the major and minor

axes represent 95% marginal CIs of the variable. In each figure, the observations are colored by the value

of ρ, which is used to represent a reduction in β̂k. Finally, each figure is grouped by the agent interaction

type: heterogeneous or homogeneous.

In the top figure, we plot day of peak % infectious vs. peak % infectious. We first look at the heterogeneous

interactions (left). When ρ < 0.35, the day of peak infectious is estimated to be within the first month

(although this is highly variable for ρ = 0.2, 0.3) and the expected peak infectious percentage is less than

10%, which indicates that the outbreak would die off quickly. When ρ ≥ 0.35, β̂k are large enough to sustain

an infection over the course of time shown, on average. One point of interest is that as ρ > .35 increases, the

sample error for day of peak decreases while the sample error for peak infectious percentage increases. The

correlation of the sample errors of day of peak and peak infectious is shown in Table 6.2. The correlation

between the sample errors of day of peak infectious percentage and final size is slightly negative. We see that

the day of peak % infectious is never below day 25, and that is simply due to the initialization of our model.

Since the populations do not interact, we need initial agents from the sub-population that were infectious at

time t = 25 (as recorded in the data) in order simulate the spread of disease.

For the homogeneous interactions in Figure 6.1 (top right), we see that summary estimates are much

more variable compared to the heterogeneous interaction models, which we would expect. We see many of

the same trends as in the heterogeneous interaction figure. The correlation between the sample errors is

-0.09, shown in Table 6.1.

Overall, in the top images, we see that reduction in β̂k, on average, leads to a reduction in peak % of

infectious agents. For day of peak % infectious, an increase in ρ, on average, leads to an increase of day
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Table 6.1: Correlation of variance of summary variables from AM simulations for homogeneous model for
t=0 onward.

Final Size Peak Infectious % Day of Peak Infectious % Infection Duration

Final Size 1.00 0.95 0.06 0.74
Peak Infectious % 0.95 1.00 -0.09 0.57
Day of Peak Infectious % 0.06 -0.09 1.00 0.71
Infection Duration 0.74 0.57 0.71 1.00

Table 6.2: Correlation of variance of summary variables from AM simulations for the heterogeneous model
for t=0 onward.

Final Size Peak Infectious % Day of Peak Infectious % Infection duration

Final Size 1.00 0.99 -0.63 -0.31
Peak Infectious % 0.99 1.00 -0.64 -0.32
Day of Peak Infectious % -0.63 -0.64 1.00 0.19
Infection duration -0.31 -0.32 0.19 1.00

of peak % infectious up to ρ = 0.35. Values of ρ > 0.35, on average, lead to a decrease of day of peak %

infectious. This implies that a reduction in β̂k can actually result in prolonging the outbreak.

In Figure 6.1 (middle) we plot final size (% of total infected over course of epidemic) and peak infectious

percentage for the different values of ρ. For both the heterogeneous and homogeneous agent interactions for

the given ρ, there appears to be, on average, logistic growth of final size given the peak % infectious. Again

the homogeneous interaction model is much more variable than the heterogeneous interaction model. The

correlation of the sample error between these two variables is 0.95, which means that large uncertainty for

infection duration is very strongly associated with large uncertainty for peak % of infectious and vice versa.

This indicates that it is very difficult to predict the “worst” day of the measles epidemic, regardless of ρ,

especially assuming homogeneous agent interaction.

We can conclude that if we want to reduce the final size of the epidemic to 75% of the population, we

need to reduce β̂∗
k < 0.5 · β̂k, which is a very sizable reduction! However, if we can decrease β̂∗

k < 0.4 · β̂k, we

can reduce the final size to 50% of the epidemic and if β̂∗
k < 0.3 · β̂k, then the final size is going to be less

than 25% of the total population with 95% certainty.

In Figure 6.1 (bottom) we plot infection duration (number of days until there are no more infectious

individuals) and peak infectious percentage for the different values of ρ. Once again, we see the similar trends

for the heterogeneous interaction and homogeneous interaction models where the homogeneous interaction

model has much larger CIs than the heterogeneous interaction model. We see that the patterns mirror those

in Figure 6.1 (top). Again, for the heterogeneous interaction model, infection duration is at least 25 days

due to the initialization of the model.
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Figure 6.1: Top: day of peak infection and peak infectious. Bottom: final size and peak infectious. Results
of AM simulation and 95% CIs. One AM consists of two groups of agents who interact across the groups
(homogeneous) and the other does not interact across groups (heterogeneous). Each AM was run 1000 times

with β̂1 = ρ× 0.43, β̂2 = ρ× 0.23, γ̂1 = ρ× 0.10, γ̂2 = ρ× 0.09.
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From these results, we can conclude that if we can reduce β̂k to 50% of its estimated value, then we can

reduce the expected final size of the epidemic to 50% of the population. If we were to reduce it to 70% of

its estimated value, we would only expect to see a final size reduction to about 80% of the population. If we

reduce β̂k to between 30-40% of its initial value then we would actually expect to prolong the epidemic in

the sense that we would continue to see measles cases for a longer period of time than if we did nothing to

mitigate the epidemic.

The primary conclusion is that from the start of the epidemic (t = 0), we would have needed a drastic

reduction in β̂k if we were to have any chance of stopping a near-population wide epidemic. We will next

examine what reductions in β̂k are required when preventions are not implemented until time t = 25.

6.2.2 Analyzing the epidemic from time t = 25 onward

Another situation to explore is when prevention policies are implemented part way through an epidemic. In

particular, we examine the population 25 days after the initial case was recorded.

The time t = 25 is chosen because it corresponds nicely to the partition of the two sub-groups of agents

found in Chapter 5. Admittedly, this partition would not be known a priori since we are not grouping the

population by a demographic characteristic and future work will be dedicated to selecting a t∗ in which we

assume the previous data is known.

Still, we can examine how an epidemic changes by varying values of β̂k. We use the same estimated

parameters as in Section 6.2.1. The difference is that we set the initial number infectious in each group (40

and 5, respectively) according to their state on day 26. The results are shown in Figure 6.2.

The results are similar to attempting to reduce β̂k from time t = 0. Again, we see that we would like

to reduce β̂k by about 50% or more to have significant results on reducing the effect of the outbreak. We

see that preventions implemented at t = 25 are less effective than having implemented preventions from the

beginning but are still useful overall. We also see that we have little variance in the estimate of the day of

peak infectious, even dependent on ρ. However, the peak % infectious remains a highly variable estimate.

On the other hand, for both the heterogeneous and especially the homogeneous interaction models for

t = 25 onward, we see that the estimates have much less variation than for t = 0 onward, which is to be

expected as we are conditioning on the observations up time t = 25. The homogeneous model’s reduction in

variability can also be explained by the significant nature of t = 25, which corresponds to how the population

is partitioned into two sub-groups. To see a sizable reduction in the final size of the epidemic (over 25%),

we would like ρ < 0.4. However, once ρ is less than this threshold, the results are seemingly exponential in

how much we can stop the epidemic from spreading further!
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Figure 6.2: Top: day of peak infection and peak infectious. Bottom: final size and peak infectious. Results
of AM simulation and 95% CIs. One AM consists of two groups of agents who interact across the groups
(homogeneous) and the other does not interact across groups (heterogeneous). Each AM was run 1000 times

with β̂1 = ρ× 0.43, β̂2 = ρ× 0.23, γ̂1 = ρ× 0.10, γ̂2 = ρ× 0.09.
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6.2.3 Prevention over time

We more generally examine how the final size of the epidemic changes with regards to the day the infectivity

parameter, β̂k is reduced. In this analysis, we condition on the first t− 1 days and begin our simulations on

day t. We plot the results in Figure 6.3 which shows final size vs. peak % of infectious and is grouped by

the day the simulations began. We examine ρ values between 0.1 and 0.9.

As the day of reduction increases we find that the the sample errors for final size and peak % of infectious

decrease. This is likely due both to the decreasing size of the susceptible population and the fewer number

of days in the simulation. We do note that there is a significant difference between the widths of the 95%

CIs from day 6 to day 11, compared to the difference in other days. We see for small values of ρ, the final

size, on average, increases as the day of reduction increases, which we expect since we are conditioning on

the data. There is a large difference in expected final size for small values of ρ between reduction day 21

and 26. In the data, over 20 individuals were infected in that time frame. On day of reduction 36, we see

that the outbreak cannot be stopped. However, it seems that up to one month, a reduction in β̂k will, on

average, reduce the final size of the epidemic. Again, the reduction of the final size is highly dependent on

ρ, with larger values of ρ leading to even greater reductions in final size.

In the case of Hagelloch outbreak, these simulations show that the quicker the response is to the epidemic,

the better. Nonetheless, preventions are still worthwhile in terms of reducing the final size of the epidemic

even a month after the start, when almost 40% of the population is already infected.

6.2.4 Reducing the infectivity parameter: summary

We examine the hypothetical scenario of what would happen in Hagelloch if we were able to reduce the

infectivity of measles, specifically by reducing β. We use the estimates for β̂k obtained in Chapter 5 and

then scale them by tuning parameter ρ. To analyze our resulting CM-AM pair simulations, we look at peak

% infectious, day of peak % infectious, final size of the epidemic, and infection duration, which are common

measures in epidemic theory. We examine these statistics using both heterogeneous and homogeneous

interaction of agents. We also examine the results of the epidemic when we reduce the infectivity of the

disease at different times t, conditioning on the first t− 1 observations.

Our results show that, we can better reduce the severity of an epidemic with earlier preventions. Moreover,

we find that we need to reduce β̂k by at least 50% to obtain significant reductions in final size of the epidemic.

As a result of this analysis, policy makers and scientists would have a goal for which how effective prevention

measures should be.

Finally, we examine when we should implement these preventions. Of course, it is better to respond to

the outbreak as quickly as possible but Figure 6.3 shows that even a month after the outbreak, we can still

reduce the final size the epidemic substantially.
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Figure 6.3: Hagelloch simulations with homogeneous agent interaction where we condition on the first t− 1
data points and include a reduced infectivity parameter, ρβ̂k on day t. Each AM was run 1000 times.
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Overall, this analysis of β̂k allows us to quantify how the outbreak might proceed if we were able to

implement preventions at a high level. In turn, this can be used to inform policy decisions and cost analysis

to determine which preventions may be more practical and affordable for a given population.

In the next chapter we will examine prevention scenarios of a more concrete nature.
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Chapter 7

Measles: agent interaction restriction

7.1 Introduction

In Chapter 5, we introduced the Hagelloch measles data set and estimated disease parameters to use in

our stochastic CM-AM pair, and in Chapter 6, we analyzed hypothetical scenarios where we looked at the

resulting epidemic under the reduction of the infectivity parameter, without specifying how the reduction is

accomplished. In this section, we examine more tangible intervention strategies through agent interaction

restriction: (i) quarantine and isolation of agents and (ii) school closure.

The above interventions are all commonly used in public health to curb the spread of disease and so

should be examined with our CM-AM pair. There are two primary differences between these two tangible

intervention strategies and the general reduction of the infectivity parameter in Chapter 6: (1) whereas

reduction in the infectivity parameter effected all agents homogeneously, these agent interaction restrictions

are local changes, and (2) to more realistically mimic real world epidemics, we use the observed number of

infectious contacts an agent has instead of their expected number of infectious contacts to determine whether

an agent becomes infectious from one time step to the next. Statistically, the second issue means that in the

Multinomial random variable transition model shown in Eq. (2.6), the probability of becoming infectious

is now a random variable. Both of these issues serve to make our models more complex and are especially

apparent in producing CIs for our summary estimates.

In this chapter we,

1. Formulate and describe our new stochastic CM-AM pairs with preventions including (i) isolation and

quarantine and (ii) school closure

2. Examine the results of isolation and quarantine

3. Determine how the epidemic would have changed under school closure
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4. Discuss the advantages and shortcomings of the results in these hypothetical scenarios.

7.2 Formulation and description of CM-AM with preventions

In the stochastic CM setting, recall that each susceptible agent has the following probability of becoming

infectious under the K&M framework,

At,n|(At−1,n = 0) = Wt−1,n,S ∼ Bernoulli

(
βn
I(t− 1)

N

)

We emphasize that the probability of transition is non-random as I(t−1) is the expected number of infectious

individuals under the true model. However, when moving to the AM framework, practically, it makes more

sense to have

At,n|(At−1,n = 0) = Wt−1,n,S ∼ Bernoulli

(
βn
η̂ (t− 1, n)

N

)
,

where η̂ (t− 1, n) is the number of infectious contacts agent n has between time t − 1 and t. When each

agent has an equal chance of contacting another agent, then η̂ (t− 1, n) = Î(t− 1), the observed number of

infectious at time t − 1. As such, the below analysis for both isolation and quarantine and school closure

will be inherently more variable than when using a non-random probability of transition. This disparity is

worth looking further into and will be addressed in future work.

The first models we introduce are for the isolation and quarantine of agents. According to the US

Health and Human Services (HHS 2019), isolation is defined as restricting the interaction of ill individuals

while quarantine is defined as restricting the interaction of well individuals. More specifically, we isolate an

infectious agent after some delay period d to her household where she can only contact other housemates.

For quarantine, we keep the entire household of an infectious agent at home after delay period d. The models

we analyze are of the form,

Wt−1,n,S ∼ Bernoulli

(
β̂n
η̂ (t− 1, n)

N

)
Wt−1,n,R ∼ Bernoulli (γ̂n)

At,n|At−1 =


1 +Wt−1,n,S if At−1,n = 1

2 +Wt−1,n,R if At−1,n = 2

3 if At−1,n = 3

(7.1)

where (β̂n, γ̂n) were determined in Chapter 5. Here, η̂(t, n) gives the observed number of infectious contacts

of agent n at time t. Isolation of the agent is implemented if t > t∗1,n + d where t∗1,n is maximum time where
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agent n is susceptible and d is some period of delay. Let h(n) be the indices of the housemates of agent n.

Let i(t, d) be the indices of the agents in isolation at time t after delay period d. Let q(t, d) be the indices of

the agents in quarantine at time t after delay period d. Let j(t) be the indices of the infectious individuals

at time t. Let r(t, n) be the indices that are to be removed from the contacts of agent n at time t. This can

be expressed in set notation as

h(n) = {m 6= n : agent m is housemate of agent n}

i(t, d) = {m : t > t∗1,m + d}

q(t, d) = {m : h(m) ∩ i(t, d) 6= ∅}

j(t) = {n : At,n = 1}

r(t, n) = indices of removed contacts for agent n at time t.

Then the number of infectious contacts each agent n has at time t, η̂(t, n), may be expressed as

η̂ (t, n) =

 # ((j(t) \ r(t, n)) ∪ h(n)) if n /∈ r(t, d)

# h(n) otherwise
. (7.2)

Equation (7.2) restricts the number of infectious contacts of the infected individual n but always includes

the housemates. We examine two sets of r(t, n): one for the isolation routine and one for the quarantine

routine,

ri(t, n) = i(t, d)

rq(t, n) = q(t, d).

In summary for isolation and quarantine routines, η̂(t, n) gives the number of infectious neighbors of

agent n at time t and accounts for isolation and quarantine routines based on the specification of r(t, n), the

indices of agents which we remove from the contact set of agent n at time t. The function η̂(t, n) allows us

to more naturally model the interaction of agents as we actually simulate the contact and spread of disease

based on the agents observed states, as opposed to their expected state.

By adjusting the delay period d, we can analyze various scenarios depending on when the infected agent

is isolated or quarantined. When d = 0, we assume the agent is isolated as soon as she is infectious. For

measles, we expect the infectious period to be between 4 days before and after the occurrence of the measles

rash. Therefore, we analyze values of d between 0 and 8. Following the analysis of the isolation routine, we

examine quarantine of housemates of infectious individuals to their house, again with a delay d. We discuss

the results of this analysis, which are displayed in Figure 7.1.
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We also restrict the contacts of agents when implementing school closure. In the Hagelloch data set,

there are three classes: pre-school, first class (primary school), and second class (secondary school). Here,

pre-school means that a child does not attend school.

To estimate the disease parameters in Chapter 5, we assumed that the agents interacted homogeneously

either with the entire population or a sub-group of agents. In this scenario, we remove classmates from the

contact list of agents once the total class infection reaches a certain threshold (ρ1, ρ2). That said, agents

will be free to interact with non-classmates. Arguably, this scenario does not line up with reality, as we

may expect children to be more susceptible to their classmates than others. We emphasize, then, that this

scenario is conditioned on the assumption that the parameters and interactions inferred from Chapter 5 are

true, the evidence being that the parameters provide a good fit to the actual data. In the future, we would

like to explore stochastic CM-AM pairs with more complex agent interactions.

Let c(n) be the indices of the classmates of agent n,

c(n) = {m 6= n: agent m is a classmate of agent n}. (7.3)

Let ρc be the threshold of how many children in class k must be infected simultaneously before we shut

down the school. Let Tc be the duration of any school closure. Let Ît,c be the observed number of infectious

children at time t in class c, and let Nc be the number of children in class c for c = 1 and 2. We close down

school c for the next Tc days if
Ît,c
Nc

> ρc . That is, we assume that classmates no longer contact one another

for the duration of Tc days. Let t∗c = min{min{t :
Ît,c
Nc

> ρc}, T} be the first day the threshold is crossed (or

T if it is never crossed). More formally, the number of infectious contacts at each time step for agent n is

given by

η̂ (t, n) =

 # (j(t) \ c(n)) if t∗c ≤ t ≤ t∗c + Tc

# j(t) otherwise
. (7.4)

In words, if agent n’s school is currently closed down, the number of infectious contacts of agent n is equal

to the total number of infectious agents minus the number of classmates agent n has. If agent n’s school is

not closed down, the number of infectious agents is equal to the total number of infectious agents at time t.

In general, intervention strategies can be implemented by defining η̂(t, n), the observed number of

infectious contacts at each state. We adjust the number of infectious contacts at time t of agent n,

η̂(t, n) = # (j(t) \ (r(t, n) ∪ {n}) ∪ p(n)) if n ∈ Bb (7.5)

104



where j(t) is the set of indices infectious agents at time t, r(t, n) is the set of indices of agents that are not

going to contact agent n at time t (the removal set), p(n) is the set of indices of the permanent contacts of

agent n, and Bb is some particular agent state for some space B = B1 ∪B2 ∪ . . . and Bi ∩Bj = ∅ for all i, j.

Eq. (7.5) is a general way of writing the number of infectious contacts for each agent at a given time.

In words, we take the set of infectious individuals, take out contacts who are limited by the prevention

implemented by the agent being in state Bb but retain permanent contacts such as housemates.

7.3 Isolation and quarantine results

While in Section 6.2 we examined the effects of reducing β̂k, a global estimate, we now examine the effects

of local interventions such as isolation and quarantine of agents. That is, using our estimates of the disease

parameters, we use the stochastic CM-AM pair to analyze local interactions while implementing isolation

and quarantine routines with some delay.

For the Hagelloch data set, we implement both isolation and quarantine routines. Specifically, in the

isolation routine we note the date of each child’s initial infection. After some delay d, we isolate the child to

her home for the remainder of her infectious period. Once the isolation is in effect, the child can only spread

the disease to the children who belong to the same household. In the extreme case when d = 0, we would

expect there to be a very slim chance of an outbreak since the child is immediately isolated. A more likely

scenario is that the child is not isolated until some d > 0 period of time has passed. We investigate a delay

period of d ∈ {0, 2, 4, 6, 8} days.

The quarantine routine is similar in that we isolate an infectious child after some delay d. However, we

now quarantine some of the child’s contacts. In our quarantine routine, we quarantine the children who

belong to the same household as the infectious child after delay d. In theory, this should prevent outbreaks

that could occur when another child in the household is infectious but not yet isolated, allowing her to spread

the disease.

We first compare the general results of isolation of an infectious child after delay period d compared

to quarantine of housemates of an infectious child after delay period d (top row of Figure 7.1). As the

quarantine routine is a superset of the isolation routine, it is no surprise that the average final size and

peak % infectious are all less than their isolation routine counterparts. However, we find that the day of

peak % infectious is larger for quarantine routines than their isolation counterparts with the same delay. We

also see that the sample error for peak % infectious, final size, and peak % infectious also decrease, and the

sample error reduction seems to be more prominent for smaller delay values. This allows us to conclude

that quarantine of housemates of the infectious child along with isolation of the infectious child is more

effective than isolation alone. For example, for a delay period 0, we expect the difference between isolation
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and quarantine final size to be 0.62% less, a delay period of 4 days we expect the difference to be 10% less,

and a delay period of 8 days we expect the difference to be 4.52% less.

We can also compare the difference in delay periods to one another. We focus on the results of the

isolation routine, but the quarantine routine results are similar. In general we see that a smaller delay, on

average, is associated with a smaller average day of peak % infectious, final size, and peak % infectious as

well as with a smaller sample error of those same attributes. For a random probability of infection (i.e. the

model in Eq. (7.2)) with no isolation, we would expect the final size to be 64% (95% CI: [0, 78]%) of the

population; when we have a delay of 8 days, we expect the final size to be 37% (95% CI: [0, 55]%); when

we have a delay of 4 days, we expect the final size to be 11% (95% CI: [0, 27]%); and when we have a delay

of 2 days, we expect the final size to be 3% (95% CI: [0, 11]%). Therefore, we see that isolating children as

soon as possible is much more effective, in the sense that even a 4 day delay can result in an expected final

size from 64% to 11%!

Overall, we see that quarantine and isolation can be very effective at reducing the spread of measles

on this population of Hagelloch children. Again, we emphasize that this analysis is conditioned on our

parameter estimates for β̂k, γ̂k, and the homogeneous interaction of agents.

7.4 School closure

We analyze the potential effect of shutting down the first and second classes would have on the spread of

the epidemic. We examine AM scenarios with ρ1 = ρ2 ∈ {0, 0.2, . . . , 1} with Tc = T , which is a permanent

school closure once the threshold is met. Astute readers will note that in Eq. (7.4), it is possible to exclude

household members from η̂ if the two belong to the same class. The results, shown below in Figure 7.2,

however, show that this choice does not matter much.

Figure 7.2 shows day of peak % infectious vs. peak % infectious (top) and % final size (%) vs. peak %

infectious (bottom) where in both graphs, the observations are colored by the closure threshold. The length

of the horizontal and vertical axes of the ellipses represent the marginal 95% CIs of the estimates for 1000

simulations for each threshold value.

The results from Figure 7.2 are inconclusive, especially since the ellipses almost all overlap one another.

These estimates are highly variable and final size CIs, for example, span the entire range of 0 to 100% for

every threshold value. The average estimate for the final size for when ρc = 0, meaning a permanent school

closure as soon as one child in the class is infectious, seems to be smaller than the other threshold values,

but again this is not a significant difference.

One thing we see is that the average estimate of final size is larger for larger closure thresholds up until

ρc = 0.4. Then, we see that a closure threshold of ρc = 1 has a smaller final size estimate than for both

ρc = 0.6, 0.8. The threshold ρc = 1 corresponds to never shutting down the school and should (and does)
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Figure 7.1: Simulation results of isolation and quarantine routines along with baseline simulations for given
estimated parameters from Chapter 5. Here, Each each AM was run 100 times with β̂1 = 0.43, β̂2 =
0.23, γ̂1 = 0.10, γ̂2 = 0.09.
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Figure 7.2: AM scenario of school closure for 1st and 2nd class of Hagelloch
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have the same results as the “Random probability of infection” model in Figure 7.1 (bottom right). We see

that the average estimates for the final size when the threshold is larger than ρc > 0.4 is actually greater

than not closing the school at all. This may be an unintuitive result but 1) we see that the results are highly

variable to begin with and 2) Grefenstette et al. (2013) have shown that we can actually prolong an epidemic

through school closures.

The results of this simulation do not imply that closing schools is an inviable strategy to prevent the

spread of measles, in general. However, it does show how initial calibration can effect our interpretation

of the resulting AM. In this scenario, we remove classmates as contacts once the threshold is met, but

the remaining population still has an equal chance of interacting with one another. The large variance is

especially prevalent in the Hagelloch data set because of relatively small population.

7.5 Chapter summary

We examine two hypothetical scenarios with our stochastic CM-AM pair using parameter estimates fitted to

the Hagelloch data in Chapter 5. These two hypothetical scenarios are examples of what policy makers may

be interested in when forming responses to potential epidemics. In these scenarios, we examine potential

outcomes from imposing quarantine and isolation routines and school closures on our agents.

There are many ways to analyze an epidemic, and we focus on peak infectious %, peak infectious %

day, and final size of the epidemics. In order to analyze these hypothetical scenarios, we use our stochastic

CM-AM pair as implemented in our R package catalyst.

For these scenarios with tangible intervention routines, we implement interventions by restricting the

number of infectious contacts of each agent when certain conditions are met.

For the first scenario, quarantine and isolation, we are remove almost all contacts except for the

housemates after some delay d. Unsurprisingly, we find that isolation is less effective than quarantine

and isolation combined. We see that if we isolate infectious agents quickly enough, we can reduce the final

size of the epidemic up to 40%!

For school closure, the results are much more inconclusive, having large and often uninformative CIs for

our estimates of days of peak % infectious, peak % infectious, and final size. We see that having a closure

threshold over 0.4 may result in even larger final size than having not shut down the school at all, but this

result is not statistically significant.

For both of these contact restriction scenarios where we directly adjust η̂ to create local changes within

the model, we find that we have very large CIs, many of which, especially in case of school closure, are

uninformative. An important reason as to why the CIs are so wide is that the probability that an agent is

going to become infectious is now itself a random variable since it is based on η̂, an issue we will address in

the future.
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Overall, we see that we can learn much from running hypothetical scenarios with our AM, including how

much we would like to reduce the infectivity of a disease and the usefulness of isolation, quarantine, and

school closure routines. Moreover, since our AMs are generated using parameters estimated directly from

the stochastic CMs, we have more of a reason to trust in our results.

That said, these analyses raise some important issues for modelers. The first issue is that these analyses

are conditional on the disease parameter estimates. Future analyses may benefit from putting a prior on

these disease parameter estimates to further propagate uncertainty.

A second issue is whether or not to use the observed versus expected number of infectious contacts. On one

hand, using the observed number allows our simulations to closer mimic reality. That is, in the simulation,

an agent has some chance of receiving an infection from the agents she actually contacted. When we use

the expected values, we gloss over these direct connections in favor of an aggregate probability of becoming

infectious. However, the results of this are apparent, for example, in Figure 6.1 as compared to Figure 7.1.

The CIs for summary statistics for the models using the expected number of infectious contacts compared to

the models using the observed number of infectious contacts are much smaller and more informative. This

difference in CI width is partly exacerbated by the relatively small number of agents in the simulation. Still,

using a random probability of transition, as opposed to a non-random probability of transition, naturally

results in larger uncertainty.

A third issue is how interventions in reality may not make as much intuitive sense after they are

implemented in the model. For example, we refer to our school closure example where we assumed the

agents interacted homogeneously with one another. The result of this is that while closing down the schools

did remove contacts from agents, the agents still could interact equally with the remaining population. As

such, results and their interpretations only make sense in the context of our selected model.

We finally note that the CM-AM pair here allows us much freedom, as opposed to using a CM. We began

with a stochastic CM-AM pair where the CM and AM are equivalent in distribution in terms of the number

of agents in the number of states at each given time. However, as soon as we implemented the intervention

routines, we changed the model. Using the AM allowed us to easily implement these routines, especially

using the function η̂(t, n), the number of observed infectious contacts of agent n at time t. It is unclear how

one would implement these preventions while using the CM in a modular and flexible manner.

In conclusion, we were able to use the strengths of both CMs and AMs in this analysis and as a result can

provide recommendations to policy makers and scientists of how we should approach similar outbreaks of

measles. Using the CM framework, we were able to perform model selection and estimate parameters on the

existing measles data. Once our models were selected, we leveraged the AM framework and our estimated

parameters to change the model and agents, locally. This allowed us to analyze important prevention

behavior such as reducing the infectivity parameter, isolating and quarantining agents, and finally closing

down schools.
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The Hagelloch data set provided an ideal test ground for our methods, as it is a feature-rich, yet small in

terms of number of actual agents. In the next set of chapters, we will analyze our stochastic CM-AM pairs

on a much larger data set in terms of number of agents but smaller in terms of the number of features the

agents have.
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Chapter 8

Ebola: parameter estimation

While the previous set of chapters explored fitting a stochastic CM-AM pair to a data set from 1861, in this

set of chapters we explore a recent outbreak, the Ebola outbreak in Western Africa from late 2013-2015.

We limit our analysis to Western District, Sierra Leone, which includes the nation’s most populous city and

capital, Freetown.

We highlight how the stochastic CM-AM pair is applicable to modern settings. The primary differences

between the measles and Ebola case studies are two-fold: 1) the Ebola outbreak encapsulates a much larger

region, in terms of geographical area, number of infections, and total population size; and 2) the Ebola

person features in the available data are sparse, especially in comparison with the measles outbreak. We

show that regardless of the size, the stochastic CM-AM pair is still useful and can be used to investigate

relevant questions. In this set of chapters we:

1. Describe the features of Ebola and how this guides our model selection

2. Examine the data for the 2014-2015 Ebola outbreak

3. Fit models and perform model selection on said data

4. Examine AMs with respect to

(a) the effective population size N

(b) sensitivity to initial conditions

(c) basic agent interaction restrictions.

Instead of repeating the analysis done for measles (e.g. looking at reduction in β, isolation and quarantine

routines, and school closure), we instead focus on sensitivity of the results to initial conditions in the model.

Analysis of the Ebola outbreak is important because of the influx of recent studies of the disease in the
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field of epidemiology and because of the even more recent (and more deadly with a mortality rate of 67% in

the Democratic Republic of the Congo) outbreak of Ebola in Central/Eastern Africa (Cohen, 2019; Drake,

2019).

We first estimate disease parameters using a stochastic CM. Again we use the SIR disease-states. Here,

we concede that having an exposure state (and hence using an SEIR model) may be more appropriate than

not having one. However, the data we have does not allow us to easily or accurately infer such a state.

Moreover, we find that the SIR disease-states models fit the data well, after adjusting for N , the effective

population size.

In this chapter we study the effects of adjusting N , the population size, which was previously considered

to be a fixed value. Under the CM framework presented in Chapter 2, all susceptible agents must interact

homogeneously with infectious agents, or in other words, have the same probability of becoming infectious

from one time step to the next. The validity of the assumption that individuals within a population interact

homogeneously with one another is closely associated with the magnitude of N . Moreover, the population

size N is seen in both the stochastic K&M Binomial probability of becoming infectious (pt = βI(t)
N ), as well

as in the Reed Frost version (pt = 1− (1− β/N)I(t)). We now treat N as a parameter of the model. To be

clear, we still assume that N does not vary with time. Rather, we now treat N as the effective population,

i.e. there exists some group of individuals of size N in which the assumptions of the CM hold.

As another focus, we analyze the sensitivity of model results to initial parameters, especially with

regards to the location of the initial infection. We compare the disease spreads spatially when we assume

homogeneous interaction of agents versus heterogeneous interaction of agents. More specifically, in our

simulations, interactions of agents are determined by physical distance among agents.

This chapter proceeds as follows. In Section 8.1, we overview some of the important details of an

Ebola infection and discuss the data, especially with in regards how we fit our stochastic CM-AM pair.

Following that, in Section 8.2 we fit a stochastic CM-AM pair and estimate parameters to use when analyzing

hypothetical scenarios. Finally, in Section 8.3, we summarize the chapter.

8.1 Exploratory Data Analysis

According to Baize et al. (2014), a new strain of Zaire ebolavirus (EBOV) was identified as the cause of

death of an individual, who is now considered to be “Patient 0,” that occurred at the end of 2013 in Guinea.

Following the initial case, the disease spread through Western Africa, where over 30,000 probable, suspected,

or confirmed cases were reported between 2014-2015. One of the reasons why outbreaks of Ebola are treated

very seriously is due to the disease’s high fatality rate, which is over 30% in our data set and closer to 70%

for the 2019 outbreak in the Democratic Republic of the Congo (DRC) (Drake, 2019).
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Figure 8.1: Map of Western Urban and Western Rural, Sierra Leone. The North Western part consists of
Western Urban (where Freetown is) and the remainder is Western Rural. The population density is plotted
according to the synthetic agents produced by SPEW and supplemented further here. The red dots represent
imputed infection locations of Ebola between 2014-2015.

Unlike measles, Ebola virus is transferred through direct contact with blood or bodily fluids from a

body (alive or dead) infected with the virus or through the consumption of or contact with infected vectors

including fruit bats or other primates. Symptoms of Ebola include fever, diarrhea, vomiting, and unexplained

hemorrhage and appear 2-21 days after contact with the virus (Centers for Disease Control and Prevention,

2019). A unique feature of Ebola is that the disease can only be spread by an infectious person who has

shown symptoms. There are currently no licensed antiviral drugs to treat Ebola and so prevention of the

disease is of utmost importance. However, the recent vaccine rVSV-ZEBOV, according to Henao-Restrepo

et al. (2017) has a near 100% success rate 10 days after the vaccine has been administered.
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Table 8.1: Subset of reported Ebola cases in Western District in Sierra Leone.

Inferred Onset Date Treatment Center Final Status Age

2013-12-26 NA NA 53
2014-12-27 NA NA 35
2015-03-26 NA Dead NA
2014-11-14 NA Dead 1
2014-10-23 Freetown 42 Alive 29
2014-12-27 Freetown 42 NA 14

The data, which is available in the supplementary material in Backer and Wallinga (2016), was collected by

the World Health Organization (WHO) and ranges from reporting dates of January 2014 through September

2015. The countries infected with Ebola are in Western Africa and include Guinea, Sierra Leone, and Liberia

and more. The data consists of over 33,000 confirmed, probable, or suspected cases of Ebola Virus. Of these

cases, 21,451 occurred in Sierra Leone. The data are available at the district level, which is equivalent of

a US state. Of these cases in Sierra Leone, 8,802 cases were reported in the Western District, which is the

area on which we focus in this analysis.

A sample of the data is shown in Table 8.1. As seen in the sample, the data is incomplete. Every record

has a date of inferred onset. Of the 8,802 cases, 8,531 do have the age recorded (97%). The treatment center

is reported for only 1,459 of the cases (16%). There are 42 treatment centers in Western Urban that were

used and 26 centers in Western Rural along with 29 treatment centers outside of Western district. Over 30%

of the reported cases resulted in death (2,747 total).

The distribution of the reported ages is shown in Figure 8.2. From the figure, we see that children under

5 years old are the most common group reported. The very young and very old were the most likely to die

from Ebola.

Overall, we see that the reported Ebola cases are not very feature rich, especially in comparison to the

Hagelloch data set. We do not know any demographic information about the infected people nor location

below the district level.

Infamously, the outbreak of Ebola in Guinea began on December 27, 2013 with Patient 0. From there, the

disease spread slowly in Western District until July 2014 (approximately 200 days after the first infection).

At that point, the disease spread rapidly, peaking around November of that year. The disease then declined,

albeit with the occurrence of mini outbreaks through 2015. The spread of the disease is shown in Figure 8.3.

We initially assume all N = 1.4 million agents (the population of Western District) are initially susceptible,

and use the inferred onset date as the day of infection, t∗1,n. We impute the maximum time before recovery
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Figure 8.2: Stacked histogram of reported ages, grouped by final status.

for case n, t∗2,n (possibly censored at time T = 605),

Zn
iid∼ Poisson (λ = 9)

t∗2,n = min
{
t∗1,n + Zn, T

}
where t1,n is the maximum time before infection of case n and Zn is a random Poisson draw with mean

λ = 9. The reason why λ = 9 is chosen is because Ebola symptoms appear 2 to 21 days after contact with an

infectious individual an average of 8 to 10 days (Centers for Disease Control and Prevention, 2019). However,

we note the choice of a Poisson random variable is rather arbitrary and is something we will investigate in

future work.

8.1.1 Demographics

In 2015, there were approximately 1.4 million people in Western District, which is sub-divided into Western

Urban (∼1 million people) and Western Rural (∼0.4 million people) (SPEW, 2017).

The region is shown in Figure 8.1. Geographically, Western Urban’s area is about 8 times smaller than

Western Rural despite having over twice the amount of people. Moreover, note that a large portion of

Western Rural is the Western Area National Park, which is a UNESCO tentative world heritage site (World

Heritage Cites, 2018) and is sparsely populated.
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Figure 8.3: Ebola cases in Western Urban and Western Rural Provinces, Sierra Leone. We plot the observed
infection dates which have been imputed to SIR format where the recovery time is the infection date plus a
Poisson random draw with mean λ = 9. The susceptible population is taken to be N = 1.4 million people.
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Figure 8.4: Ebola cases in Western district for different age groups. We plot the observed infection dates
which have been imputed to SIR format where the recovery time is the infection date plus a Poisson random
draw with mean λ = 9.

In terms of the observed Ebola incidence data, there are two primary demographic features of interest:

1) age and 2) ID of treatment center. Age is reported for all but 3% of the reported Ebola cases. However,

only about 16% of the observed Ebola cases have a reported treatment center. The treatment centers are

identifiable by district and number but their exact name and geographic location are unknown.

In Figure 8.4 we plot the incidence as a percentage over time grouped by whether the treatment center

the case attended was in Western Urban or Western Rural. From this figure, it seems that incidence moves

from the urban to the rural areas. In Figure 8.5, we plot the incidence as a percentage over time grouped by

age categories: 0-5, 5-15, 15-30, 30-45, 45-60, and 60+ years old. When we say percentage, we mean out of

the total number of individuals in that group. One trend of note is that the percent of infectious over time

for the 0-5 year olds looks more similar to the 60+ year olds than to the other groups. We also see that the

0-5 year olds and 60+ year olds have at least two distinct peaks whereas the other age groups (besides the

NA category) have only one distinct peak.

In short, there are very few demographic features to go along with the Ebola case inferred infection

dates. In comparison to the Hagelloch measles data set, we are missing sex, household structure, household

location, class, and purported infector ID.

Since the Ebola data set is poor with respect to demographic features of the infected agents and says

nothing at all about the other susceptible agents, we supplement the Ebola incidence with a synthetic agent

data set. Specifically, we use the Synthetic Population and Ecosystem of the World (SPEW) synthetic
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Figure 8.5: Ebola cases in Western Urban and Western Rural Province treatment centers, Sierra Leone. We
plot the observed infection dates which have been imputed to SIR format where the recovery time is the
infection date plus a Poisson random draw with mean λ = 9.

agents produced by Gallagher et al. (2018) for Sierra Leone. The agents are generated so as to best maintain

demographic distributions and household structure within a region. We further supplement the SPEW

synthetic agents with road-based sampling which follows the logic that people tend to live near roads. The

resulting SPEW population is shown on the map in Figure 8.1.

Finally, we combine our Ebola incidence data set with the Western District synthetic agents. For each

incidence case, we examine the corresponding synthetic agents who are plus or minus 2 years of age of the

reported case. Of those agents in the proper age range, we uniformly at random select one of them to be the

corresponding demographic characteristics for the incidence case. Once an agent is selected to correspond

to an incidence case, it is removed from the set agents to be sampled from for the remaining incidence cases.

The main benefits of supplementing the Ebola incidence cases with SPEW agents are two-fold: (1) we

gain a household structure for our agents, and (2) we have a much finer spatial granularity of our cases,

which will be useful once we begin to consider heterogeneous interactions of our agents.

Unfortunately, the locations of the Ebola incidence cases are drawn independently from any location

data (because we have none or very little of it), meaning that we will not see any obvious pattern in spatial

transmission of the disease over time in our imputed data set of incidence cases. However, we still consider

this a useful exercise because we will explore how the spatial features of the infectious cases change as a

result of varying interaction conditions for the agents based on their proximity to one another.
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8.2 Ebola model selection

The first choice we have to make to structure our stochastic CM-AM pair is to fix our disease-level states.

Once again we use the SIR disease-level states, although we do note there are some concerns with choice.

One notable feature about Ebola is that the disease can be transmitted even when the victim is deceased,

typically through interactions with the body via funerals or at hospitals Drake et al. (2015). However, the

data to which we have access does not provide any insight about these transmission states, and so like in

the case of measles case study, we use the SIR disease states.

Another issue one may be concerned with is birth and death in the population since the epidemic occurs

over a period of two full years with a population of 1.4 million people. In the literature, this problem is

commonly dealt with by introducing birth and (non-Ebola) death into the population such that the final

population remains constant N (Anderson and May, 1992; Allen, 1994; Zaman et al., 2009). We assert

that since less than 1% of the population of the Western district is infected over the course of two years,

adding in birth and death unnecessarily complicates the model, especially given that we do not know how

the population changes over time.

For the measles outbreak in Chapters 5-7, we focused on partitioning the agents into different groups,

but in this chapter we focus on the total population N used in the model, which until this point has been

treated as a fixed value.

Recall the K&M deterministic CM-SIR difference equations are the following,



∆S
∆t = −S × β I

N

∆I
∆t = S × β I

N − I × γ

∆R
∆t = I × γ

The role N plays in these equations is the number of individuals in the total population. Moreover, the

model specification implies that all N of these agents interact homogeneously with the infectious agents. In

the Hagelloch measles outbreak, we had a strong argument that N was equal to the final size of the disease

and also explored what happens to R0 when we considered the full population size (adults and other immune

individuals). For the measles outbreak, even when considering the larger N , it was still on the same order

of magnitude as the final size. Additionally, it is not unreasonable to assume that the population interacts

approximately homogeneously since Hagelloch in 1861 was a small and isolated village.

Compare this to the Ebola outbreak in Western District Sierra Leone, where only 8802 cases were reported

out of a population size of 1.4 million people, less than 1% of the population. It is difficult to imagine any

scenario where 1.4 million people interact homogeneously. At the same time, it is also difficult to imagine

that the 8802 reported cases only interacted among themselves. Moreover, Western District is split into an
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urban and rural region (see the map in Figure 8.1), and it is highly unlikely that a person living in a small

town in Western Rural would interact in the same manner with an Ebola-infectious person who is located

in the more urban Freetown.

We therefore propose that there is some sub-population of size N where the susceptible people interact,

approximately, homogeneously with the infectious individuals. We explore this scenario by treating N as a

model parameter, in addition to β and γ. We do this by first finding model parameters by minimizing the

joint mean square errors, and in future work, we will consider likelihood based methods where we consider

N to have some probability distribution.

As we are looking for parameter estimates for our AM, we find it reasonable to first explore fitting a

deterministic SIR-CM as a function of fi(β, γ,N) (with values scaled between 0 and 1 (separately) for each

of the S, I, and R values), especially since the expected value of our Binomial SIR model is unbiased.

Specifically, we find estimates of β, γ, and N ,

(β̂, γ̂, N̂) = arg min
β,γ,N

1

T

3∑
i=1

(xi − fi(β, γ,N))2 (8.1)

where xi are the observed SIR Ebola data that are first scaled between 0 and 1. Note that the number of

susceptibles in the data changes as N changes. The results of this are shown in Table 8.2 for different values

of N , specifically when the agents are assumed to interact homogeneously (N= 8802), the “best” N (N =

18758), N = 105 an intermediate value, and N = 1.4 × 106, the actual population of the Western District.

The best N̂ value is found to be N = 18758 using Nelder-Mead optimization, minimizing the objective

function in Eq. (8.1). Using this, we find β̂ = 0.159 and γ̂ = 0.122 where consequently R̂0 = 1.31 (95%

CI: [1.21, 1.40]). In contrast, when N = 8802, R̂0 = 1.63 (95% CI: [1.44, 1.82]), and when N = 1.4 × 106,

R̂0 = 1.05 (95% CI: [1.05, 1.05]). These results show that N provides a very important role in estimating

R0 both in terms of the value of R0 but also the widths of the corresponding CIs, and at the very least, this

analysis provides an upper and lower bound on R0, somewhere in between 1.05 and 1.82.

Table 8.2: Joint Mean Square Error (MSE) for observed vs. fitted SIR models with varying N along with
an estimate of R0 and a 95% CI interval. The highlighted row is the model with the minimum MSE for all
N , β, and γ.

N MSE R̂0 Lower bound Upper bound

8802 0.10 1.63 1.44 1.82
18758 0.01 1.31 1.21 1.40
100000 0.13 1.05 1.02 1.07

1400000 0.69 1.05 1.05 1.05

We take a closer look at the best model according to the minimum joint MSE. We plot the model and

observations as a zoomed in ternary plot in Figure 8.6. The observations are plotted in black and the
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Figure 8.6: Observed Ebola SIR data from 2014-2015 for Western District Sierra Leone and best fit SIR
model with β = 0.16, γ = 0.12 and N = 18768 as a ternary plot.

estimated trend in blue. To show some sense of the time scale, we plot different values of days in different

colors, triangles for the estimated values, and circles for the observed values. Overall, we see that, visually

the best estimated model fits the data very well, even when taking into account the time scale.

The conclusion we can draw from this model fitting analysis is that the total size of the homogeneous

population we assume (or estimate) in the SIR-CM models (both deterministic or stochastic) is extremely

important in inferring information about the infectivity and recovery period of a disease.

In terms of our stochastic CM-AM pairs this is important in not only estimating disease parameters

to initialize our AM but also about the general dependency structure of the agents. More specifically,

the best-fit SIR tells us there is about a community of 18,750 people that have approximate homogeneous

interactions with the infectious agents. If we knew more about the infectious agents, e.g. their hospital

locations, their families, and their homes along with information about hospital workers, we could use this

number to simulate an agent-based model among neighbors.

From this modeling, we also have evidence that the Western District is independent from outside infectors,

with perhaps an exception for the initial infection, which supports the results found in Backer and Wallinga

(2016). That is, since our best fit SIR model is a very good fit to the data, we do not need to rely on outside

actors to sustain the Ebola epidemic. From that, we can instead focus on containing the disease locally

instead of having to focus most of the preventive routines for long distance travel of cases.
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Finally, estimating N is important in that it greatly improves what we can study with a flexible CM-

AM pair. Since AM run time is based on the interaction between agents, it is much more computationally

efficient to look at a closed group of 18,750 people rather than all 1.4 million individuals at once. If using the

full population of 1.4 million people, we are limited in what interventions we can analyze in our simulations

simply due to practical limitations in computing.

8.3 Chapter summary

Ebola is a deadly disease and so it is of utmost importance to better understand its spread through Western

District in Sierra Leone, which consists of over 8,000 of the over 30,000 reported cases in the Ebola epidemic

of 2014-2015 in Western Africa.

In this chapter we explored the Ebola data set presented in Backer and Wallinga (2016) and estimated

the disease parameters corresponding to an SIR model. In particular, we introduced the issue of treating N

as a parameter, the effective population size, rather than a fixed value.

In our exploratory data analysis in Section 8.1 we impute recovery dates for reported infection cases

based on past CDC information about Ebola. Using this estimate, we find that the Ebola SIR curves look

like noisy versions of deterministic SIR curves, especially from July 2014 through 2015, although there looks

to be a mini outbreak in May 2015. As such, we find it appropriate to estimate parameters from SIR-CM

models. Since Western District is split into Western Urban and Western Rural, we examine the infectious

curve in the reported treatment centers in the two regions (although the treatment centers were reported for

only 16% of the data). From 8.4 we see that urban infections generally seems to precede rural infections,

which may suggest that the infection spreads from the city into more rural regions. We also examine the

spread of disease among different age groups (see Figure 8.5) and find the very young and very old seem to

have more similar infection curves than those of other ages.

For the model selection, we decide to treat the population as one group with the same β and γ parameters.

However, we find that the effective population size N is very important in fitting a SIR-CM to the Ebola

data. Specifically, we find that N = 18, 750 is the optimal number of people according to minimizing the

joint MSE of the observed data. The best fit model is shown in the ternary plot in Figure 8.6, and our best

estimate for β̂ = 0.159 and γ̂ = 0.122 which indicates a reproduction number estimate of R̂0 = 1.31 (95%

CI: [1.21, 1.40]). We find that the effective population size N is very important when fitting a model and

can help guide our AM in terms of the number of people needed to adequately model the population.

In the next chapter, we will explore AM simulations using our parameter estimations from this chapter

as a guide. We will examine spatial spread of the disease, the effect of N on our simulations, and sensitivity

to initial conditions of our model.
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Chapter 9

Ebola: hypothetical scenarios

9.1 Chapter goals

In this chapter, we use the model selection and parameter estimates from Chapter 8 to initialize our stochastic

CM-AM pair and analyze how variation in initial parameters effects the results. As AMs are used to analyze

both spatial and temporal aspects of an outbreak, we examine both aspects here. Unfortunately, we do not

know how our infected cases in the Ebola data are related to one another or where they are located within

Western District. Moreover, we only know the treatment center of 16% of the infected cases. As such, it is

difficult to say anything conclusive about how the disease spreads spatially.

Instead, we will make simple assumptions about how Ebola spreads throughout the community, namely

by assigning contacts to agents based on their household location. We do not claim that this is how the

disease spreads in reality but believe it is a good basis from which to guide future AMs when there is more

information about how the disease is transferred from person to person. Thus, many of the results in this

chapter represent a large-scale proof of concept, in that a CM-AM pair can be used to analyze a region even

when N is large.

In this chapter, we explore the following three initial values of the AM and how they influence the

resulting spread of Ebola

1. Homogeneous versus heterogeneous interaction of agents

2. Sensitivity to the initial location of infectors

3. Effective population size and number of neighbors.

In Section 9.2, we study homogeneous interaction versus heterogeneous agent interaction. We examine

our best fit CM-AM pair, which has homogeneous interaction of agents. The results of this study show
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this model fits the data very well, especially compared to any heterogeneous interaction CM-AM pairs with

the same population size. However, when using a heterogeneous interaction AM, the spatial spread of the

disease differs radically. We demonstrate how the transmission differs and show this statistically.

Following that, in Section 9.3 we examine the sensitivity of the CM-AM pair to the initial infector

locations. Since Western District is split into Western Urban and Western Rural we explore the spatial

spread of the disease for 1) when all the initial infections are located in Western Urban and 2) when all

the initial infections are located in Western Rural. Again, we assume that the heterogeneous interaction

of agents is based only upon their physical location and so this is more for illustrative purposes and future

CM-AM pairs than for any conclusions regarding this specific Ebola outbreak.

Then in Section 9.4 we examine both the effective size of the population, N , along with the limiting

the number of neighbors, M . We demonstrate how variation in N and M effect summary statistics of the

spread of a disease, and we show the differences in computational memory and time needed to carry out

such simulations.

Finally, in Section 9.5, we summarize and highlight the results found in this chapter.

9.2 Homogeneous versus heterogeneous agent interaction

In this section, we compare homogeneous interaction of agents versus interaction of agents based on their

household location. In Chapter 8, we found that the best fit SIR-CM has the following parameters: effective

population size N̂ ≈ 19000, β̂ = 0.159 and γ̂ = 0.127 and homogeneous interaction of individuals. We

propose that it is reasonable to assume there exists some group of about 19000 agents that act approximately

homogeneously with the infectious agents, and this is supported by the best-fit model’s low MSE and visual

diagnostics via a ternary plot. However, it is a whole other and quite more difficult question to ask which

agents belong to such a group. If the data contained more demographic information about the infected cases

and where they were treated we would likely to be state something more verifiable. Since we do not have this

information, we instead demonstrate possible scenarios of agent interaction and determine how this effects

the spread of the disease spatially. In this set of simulations, we perform the following experiments:

1. Fix the effective population size N and use estimates of β̂ and γ̂

2. Assign appropriate number of agents to be initially infectious

3. Simulate the AM under the assumption of

(a) homogeneous agent interaction

(b) heterogeneous agent interaction.

4. Compare the aggregate disease state totals
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5. Examine the spatial spread of the disease.

We begin with N ≈ 19000, which is the best fit N and the corresponding best estimates β̂ = 0.159 and

γ̂ = 0.127. To select the agents we randomly sample P = N/(ave. household size) from the 1.4 million

available agents, where the average household size is about 8 in Western District. We then union all the

household members to this set since household members presumably have ample contact with one another.

Of these N resulting agents, we randomly select 11 to be initially infected and 32 to be initially recovered

which corresponds to the data on day t = 200, right before the number of infectious begin to increase

exponentially. These 11 initially infected and 32 recovered are the same for all the following simulations.

Once the initial agents and parameters are determined, we run the stochastic CM-AM pair for L = 100

runs. For homogeneous interaction, we assume everyone is a contact of each other and thus has equal chance

of infection. The results of homogeneous interaction are displayed in Figure 9.1. Again we see that the

CM-AM pair simulations fit the observed data well, perhaps with the exception around day 550 where we

may have a mini occurrence of an outbreak. The difference between the model shown here and the one used

in the ternary plot in Figure 8.6 is that we use the observed number of infectious individuals at the previous

time to estimate the probability of a susceptible becoming infectious as opposed to the expected number.

The result is the same mean SIR curves but with larger CIs, especially around the peak infectious time.

The estimated final size is 33% (95% CI: [10, 57]%). We estimate the expected duration of the epidemic

as 533 days (95% CI: [201, 737]). We estimate the estimated peak size as 2.17% (95% CI: [0.53, 3.80]%)

and the day of estimated peak as day 350 (95% CI: [230, 471]). The main take away is that even taking our

estimate of the disease parameters to be fixed, the resulting AM produces highly variable results in terms

of the summary statistics reported above. That said, at least compared to the Hagelloch measles results in

Chapter 7, our CIs do not span the entire space of possible results. The primary reason for the relatively

smaller CIs is the larger sample size of agents and secondarily the fact that we are using one estimate of

infections parameters for all agents as opposed to separating them into groups.

With respect to the spatial spread of the disease, if the agents mix homogeneously, then we do not expect

that the spread of the disease to be dependent on the agents’ locations. That is exactly the result we see

here. In Figure 9.2 we plot a map of the region of infectious individuals over all L = 100 trials. The hexagons

are colored by taking the average time of infection of all the agents in the geographical region of the hexagon.

Since the color of the hexagons is approximately uniform across the entire region, then the spread of the

disease is independent from the geographical location of the agents. The initial infectors at time t = 200

are plotted as circles in the map. The initial infectors were assigned randomly from the set of agents (recall

that the northwestern part of the map is more densely populated and hence there are more initial infectors

in that region).
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Figure 9.1: SIR curves and 95% CIs for the results of the AM for homogeneous interaction of agents for the
best fit model SIR-CM.

128



●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

144 148 152 156
 Mean time until infection

Western District, Sierra Leone, N = 19043, β = 0.16, γ = 0.09
AM Simulation: homogeneous agent interactions

Figure 9.2: Map of infectious agents over L = 100 runs where the hexagons are colored by the average time
of infection of the agents over all the trials for the results of the AM with homogeneous interaction of agents
for the best fit model SIR-CM. The initial infections at time t0 = 200 are plotted as circles.

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

100 200 300
 Mean time until infection

Western District, Sierra Leone, N = 19043, β = 0.16, γ = 0.13
AM Simulation: heterogeneous agent interactions

Figure 9.3: Map of infectious agents over L = 100 runs where the hexagons are colored by the average time
of infection of the agents over all the trials for the results of the AM with simple heterogeneous interaction
of agents for the best fit model SIR-CM. The initial infections at time t0 = 200 are plotted as circles.

129



We summarize the variation in distance via the following statistic, which captures how far away infected

individuals are from the initial infectors. For the combined simulations ` = 1, . . . , L, let J0 be the indices

of the initial infectors and let JTL be the set of indices all of the infections over all the trials. We first find

the set that consists of the minimum distance, δx between point x in set JTL and point y in set J0. Our

statistic, m is then the median distance in that set. The distance between points x and y, d(x, y) is taken

to be the haversine distance. The mathematical formulation of the statistic is shown below in Equation 9.1,

δx = min {d(x, y); y ∈ J0}

m = median {δx; x ∈ JTL} . (9.1)

We find the median distance to be 1.24 miles (Q2.5 = 0.19, Q97.5 = 2.65), and the empirical distribution of

the minimum distance has a long, thin right tail.

We also look at the heterogeneous interacting agents. In this basic heterogeneous interaction experiment,

for N = 19000, agents were randomly assigned up to 100 neighbors who were within a one mile radius of the

reference agent. The probability of a susceptible becoming infectious from one time step to the next is now

pt,n =
β ×#Infectious neighbors of agent n at time t

# Total neighbors of agent n

We found that this model, regardless of the disease parameters β̂ and γ̂, is a poor fit to the observed data.

The reason for this is that the number of neighbors is too small to sustain the spread of the disease. We will

examine this more in detail in Section 9.4.

We still find it useful, however, to look at the spatial distribution of the disease for illustrative purposes.

A map of the spatial distribution of the disease is shown in Figure 9.3, again where the hexagons are colored

by taking the average time of infection of all the agents in the geographical region of the hexagon. We see a

clear, continuous change of the gradient of the colors, as smaller times until infection are close to the initial

infectors and larger times to infection are farther away from the initial infectors. We see clearly how the

disease spreads in Western Urban quickly and into Western Rural. For the heterogeneous interactions, the

median minimum distance is 0.93 miles (Q2.5 = 0.19, Q97.5 = 2.65).

Finally, the minimum distances are plotted vs. the time until infection for both the homogeneous and

heterogeneous interaction of agents in Figure 9.4 with a Loess smoother trend line plotted on top. These

scatter plots show that the minimum distance and time until infection are different depending on how the

agents interact with one another.
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Figure 9.4: Scatter plots of the empirical δx from Eq. (9.1) vs. time until infection for the heterogeneous
interaction and homogeneous interaction of agents with a Loess smoother trend line on top.
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9.3 Sensitivity to initial infection locations

The next aspect we examine is the sensitivity of the CM-AM pair to initial infection locations. Since our

treatment centers in the data are split into Western Urban and Western Rural, we examine initial infections

located in exclusively in one of these regions. For an AM with homogeneous interaction of agents, the initial

locations do not matter since the location is independent of the next infection and so we do not simulate any

homogeneous agent interaction CM-AM pairs here. For the sake of comparison, we analyze a CM-AM pair

with N ≈ 19000 agents with β̂ = 0.159 and γ̂ = 0.127 and the heterogeneous interaction scheme outlined

above.

Our agents for the Western District are naturally partitioned into Western Urban and Western Rural

(see Figure 8.1) where Western Urban has about 2.5 times the number of people than Western Rural, but

Western Rural has about 8 times more land area. Under our basic heterogeneous agent interaction scheme

of only having the possibility of 100 people from the effective population size N within a one mile radius of

the reference agent, we may expect the disease to spread differently based upon the initial infectors.

To analyze the spread of Ebola in Western Urban vs. Western Rural, we perform the following experiment

where we

1. Set the effective population size N and randomly sample N/8 agents from the SPEW agents and

additionally add the household members of those sampled agents to the set of sampled agents

2. Assign each agent neighbor interactions by randomly choosing up to 100 agents within a one mile

radius of the reference agent

3. Randomly sample initial infection agents who belong to Western Urban (Rural).

4. Simulate the spread of disease for L iterations using the same initial parameters

5. Compare the results for the initial infections in Western Urban vs. Western Rural.

For our experiment, we set N ≈ 19, 000 and L = 100 runs.

For the experiment with initial infectors exclusively located in Western Urban, we estimate the final size

to be 21% (95% CI: [1, 42]%), the epidemic duration to be 546 days (95% CI: [378, 764]), the peak infection

size to be 1.1% (95% CI: [0, 2.22]%), and the day of peak infection to be 371 days (95% CI: [178, 753]).

Moreover, the median minimum distance to an initial infector is 0.77 miles (Q2.75 = 0.10, Q97.5 = 2.55).

In comparison, for the with initial infectors exclusively located in Western Rural, we estimate the final

size to be 2.94% (95% CI: [0.00, 10.38]%), the epidemic duration to be 380 days (95% CI: [200, 585]), the

peak infection size to be 0.24% (95% CI: [0, 0.69]%), and the day of peak infection to be 271 days (95% CI:

[200, 439]). The median minimum distance to an initial infector is 1.39 miles (Q2.75 = 0.00, Q97.5 = 0.25).
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Figure 9.5: Maps of the average time to infection for heterogeneous interaction of agents with initial infections
in Western Urban (left) and Western Rural (right).

We plot the average time to infection maps in Figure 9.5. From these maps, we see that the spread of

infection differs by the initial infectors location. For the initial infectors within Western Urban, the disease

barely spreads into Western Rural. However, since there are many more people in Western Urban, the

spread of the disease is more likely to last longer and infect more people over all. For initial infectors located

exclusively in Western Rural, we are more likely to see clusters of infections around the initial infectors

that very slowly spread outwards. While the disease can spread into Western Urban and travel quite a far

distance, the final size of the disease is expected to be only to be 2.94% compared to 21% for Western Urban

initial infections.

The differences in our experiment are stark. Initial infections in Western Urban lead to more deadly

outbreaks that are centralized and do not travel far over the course of 400 days. In contrast, initial infections

in Western Rural mean that the disease will likely die out, but the disease is likely to travel further.

For both sets of initial infections, we see that whenever there are two pairs of agents very close to one

another in distance, we have early outbreaks in the close-by regions. Another take away from this experiment

is that the 95% CIs for the summary statistics of final size, epidemic duration, peak infection size, and peak

day of infection are all much wider than under the assumption of homogeneous interaction of agents, which

tells us that the number of contacts/neighbors is also important, along with the effective population size.

9.4 Examining the effective population and contact sizes

In the previous chapter (Ch. 8), we saw that the effective population size N has an important role in shaping

our resulting simulations whether that be through direct estimation of disease parameters or the role it has

on the variance of the statistics about an outbreak including final size, epidemic duration, peak infectious
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size, and day of peak of infectious. In the previous section (Sec. 9.3), we also glimpsed into the role that the

maximum number of contacts an agent plays in effecting the results of an Ebola outbreak.

Both the effective population size N and number of maximum neighbors, which we denote as M , influence

our CM-AM pair in theoretical and practical ways. As described in Ch. 8, the effective population size may

be interpreted as a group of people that interacts approximately homogeneously with infectious individuals.

Theoretically, the rate of convergence in probability of the estimate of the number of individuals in each

state assuming a deterministic probability of transition (see Eq. (2.4)) is OP (
√
N) and so large N will result

in smaller CIs.

The maximum number of contacts an agent may have also behaves similarly to N and larger M may

result in smaller CIs. Besides being the maximum number of contacts we may reasonably assume an agent

to have, M also sets limits on the interaction structure of agents. In general, the interaction structure may

be very complicated with features such as separate groups, bottle necks, “hub” vertices. In this situation,

however, we only know that a single agent can only infect at most M/N × 100% of the population.

The practical concerns of M and N are also important because they deal with the computer run time and

computer memory required to run simulations. The run time of a simulation is O ((T − t0)× S(t)× I(t))

since our CM-AM pairs are contingent on susceptible-infectious interactions. In the case of Ebola, S(t) >>

I(t) but for measles in Hagelloch, O(S(t)) ≈ O(I(t)). Memory also cannot be neglected as at least N × 3

agent states may be stored in the form of the U sufficient statistic (see Eq. (5.1)) and more importantly

neighbor/contact lists are pre-computed and stored in objects such as a linked list, dictionary, or N ×M

array, for instance.

In this set of experiments we

1. Fix β, γ, and L

2. Vary N and M with N > M

3. Run the CM-AM pair using the set of initial parameters and heterogeneous agent interaction

4. Report summary statistics and their variation along with time and memory of the neighbor list.

The results of this experiment are displayed in Table 9.1 and show the mean estimates along with the

sample error of a number of summary statistics. We see that the mean estimate of final size of the outbreak

tends to increase both with increasing N and increasing M . In contrast, the mean estimate of peak infectious

seems to be more dependent on the maximum number of neighbors than it does on the effective population

size. The mean estimate of epidemic duration is fairly constant once N > 1000, but the standard error is

always large. The mean estimate of day of peak is also fairly constant and has a smaller standard error than

epidemic duration.
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Table 9.1: Table of results from simulations with different effective population size N and max number of
contacts M .

N M M/N Final Size (%) SE(Final Size) Epi. Duration SE(Epi. Dur.) Peak I (%) SE(Peak I) Day of Peak SE(Day of Peak)

853 100 0.12 14.23 5.95 282.27 240.24 2.22 0.72 217.58 18.30
853 500 0.59 14.19 5.95 278.93 234.52 2.20 0.70 218.05 18.02
853 852 1.00 14.19 5.95 278.93 234.52 2.20 0.70 218.05 18.02
853 852 1.00 14.19 5.95 278.93 234.52 2.20 0.70 218.05 18.02

8706 100 0.01 18.98 9.42 516.68 316.07 1.09 0.57 335.42 84.91
8706 500 0.06 21.26 9.76 516.55 312.11 1.24 0.57 343.70 86.94
8706 1000 0.11 19.08 10.42 503.63 319.24 1.12 0.59 339.06 91.66
8706 8705 1.00 21.66 9.73 515.16 305.44 1.25 0.59 339.73 69.33

21576 100 0.00 20.35 9.35 552.54 314.16 1.04 0.51 372.99 90.73
21576 500 0.02 22.29 9.72 555.94 311.27 1.10 0.49 372.11 81.84
21576 1000 0.05 24.48 8.96 565.76 290.96 1.27 0.50 377.11 74.96
21576 10000 0.46 23.10 10.42 541.55 314.39 1.27 0.62 351.73 72.00
42373 100 0.00 22.19 9.60 570.63 299.83 1.06 0.47 406.14 84.28
42373 500 0.01 23.35 10.36 564.70 308.85 1.14 0.52 405.71 85.86
42373 1000 0.02 23.48 10.92 561.31 310.25 1.14 0.55 393.52 85.64
42373 10000 0.24 24.71 10.24 573.74 290.68 1.29 0.56 395.06 77.45
63239 100 0.00 19.23 11.69 545.27 329.15 0.98 0.57 424.56 116.56
63239 500 0.01 25.03 9.98 574.14 299.89 1.21 0.50 416.98 79.71
63239 1000 0.02 23.00 11.65 569.77 302.61 1.11 0.57 408.44 85.14
63239 10000 0.16 24.30 11.80 573.12 297.55 1.30 0.64 406.27 81.03
83502 100 0.00 24.01 7.75 584.30 277.07 1.15 0.37 432.82 70.85
83502 500 0.01 23.86 10.17 557.31 319.84 1.21 0.52 397.13 85.42
83502 1000 0.01 25.19 9.78 562.00 317.31 1.27 0.50 406.90 86.10
83502 10000 0.12 27.94 7.15 586.41 281.50 1.50 0.41 406.07 57.56

Overall, we find that the ratio of M to N seems to be more important in estimates than the numbers

themselves. Notably we find that 1) the CIs tend to be large and 2) the 95% CIs overlap with one another

for every estimate. This seems to indicate that a smaller-scale AM, in terms of N , may be used in lieu

of one that attempts to mimic an entire population. Another feature of note is that the sample errors of

the estimates do not always decrease as the effective population size increases. The maximum number of

contacts seems to have an important role in determining the SEs, as well as proportion of the maximum

number of contacts. In future work, it would be interesting to analyze contact structures besides the one

based upon uniform selection given the agent is within a one mile radius of the reference agent.

9.4.1 Computer time and memory

In terms of computer time and memory, N and M are very important, and their importance is demonstrated

in the results shown in Figure 9.6. Each simulation was run for L = 100 runs, and the time reported includes

generating the list of pre-computed agent contacts, which is then used in each of the L simulations. In

the time vs. logN graph we find that the required time appears to grow quadratically and the maximum

neighbor size is associated with larger run time. The difference between running an AM with 83502 agents

for M = 100 and M = 10000 is close to one hour. In terms of memory, generating pre-computed lists of

neighbors is expensive. For the simulation with N = 83502 agents and M = 105, the contact list was 1.5

GB where the median number of contacts each agent had was 4846.
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Figure 9.6: Scatter plots of computer time (left) and Memory (right) vs. log(N) where the lines and points
are colored by the maximum number of neighbors used in the simulation.

What this tells us is the following: 1) running a full-scale AM with N = 1.4 million would be possible,

yet slow, even with the aid of a supercomputer, 2) running a full-scale AM at the country level (N = 100+

million) with travel patterns and full agent interaction would be all but impossible, and 3) sub-sampling

the population and running the AM on that sub-sample may produce similar and adequate results but is

dependent on the assumed interaction structure on the agents.

Basically, modeling a full scale, full-interaction CM-AM of a worldwide epidemic is currently an

impossible task due to the computer time and memory required to run simulations. Thus for future work,

we will explore more ramifications of sub-sampling populations along with using stochastic CM models in

conjunction with stochastic AM models to reduce the number of necessary of agent interactions.

9.5 Chapter summary

In this chapter we examine CM-AM pair simulations using the parameters and model selection from Ch. 8

to guide our initial parameter selection. We then examine the effects of varying different initial parameters

of the CM-AM pair, specifically, heterogeneous vs. homogeneous agent interaction in terms of both the

number of individuals in each state over time as well as the temporal transmission of the disease, initial

infection in Western Urban or Western Rural, and the role the effective population size N and the number
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of neighbors/contacts we allow in the simulations. Since our data does not lend itself well to all of these

situations, many of the results are illustrative of what could be done with a CM-AM pair given more

information about how the disease is transmitted from one individual to another than opposed to conclusive

results about this specific outbreak of Ebola.

That said, we do find our model fitting from the previous chapter to be extremely useful not only in

guiding initial parameter estimates but also for determining the number of groups for the disease parameters.

Moreover, we find the stochastic CM-AM pair with N ≈ 19000, β̂ = 0.159, and γ̂ = 0.127, fits the data very

well, as shown in Figure 9.1. If researchers were interested in learning about implementing preventions at

the level of Western District such as uniformly reducing β or uniformly vaccinating the population of that

area, then we recommend using this model.

When we implement a basic interaction scheme based only on physical distance of the agents, we find that

the spatial spread of the disease becomes very important. In Figures 9.2 and 9.3 we find that as expected the

homogeneous interaction of agents does not depend on the location of agents but once we implement a basic

interaction scheme, a very clear pattern emerges such that the infection travels from the northwest part of

the district to the southwest part of the district over time. We offer a way to quantify the spatial spread

of the disease with the statistic presented in Eq. (9.1), which summarizes the minimum distance between

an infected case and the set of initial infectors. When these statistics are used in conjunction with the time

until infection, we can compare the relationship between the two, for example, using a Loess smoother as

shown in Figure 9.4.

With regards to the initial sensitivity of infection locations, we find that both the summary statistics of

the disease (e.g. final size, epidemic duration, peak infectious, day of peak infectious) and the spatial spread

of the disease are very different from one another, given our heterogeneous interaction scheme. Although we

acknowledge it is unrealistic that people can only spread the disease to those in a one mile radius, this shows

that the both contacts of the agents and the location of the agents greatly influence how an epidemic can

spread. For example, we find that more population dense areas are more likely to result in a worse outbreak

but in some respects are better at containing the disease within the region. On the other hand, agents in

more rural and spread-out areas are less likely to transmit the disease, but when they do, the disease can

travel quite far. This may be evidence that it is easier to contain a spread of a disease in a population dense

area than one that it is not, which may seems counter intuitive. We do note that this simple analysis does

not take into account long-distance behaviors such as car and airplane travel, which would allow for farther

travel of the disease, and this should be studied in future work.

Finally, we study the theoretical and practical effects the effective population size N and the contact size

M have on our AM simulations. We find that although the mean estimate of final size of the epidemic tends

to increase as N increases, the CIs of those estimates overlap, suggesting that it is not necessary to have a
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full-scale simulation of a population. Determining, however, what number of agents is needed to have an

adequate AM remains an open problem.
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Chapter 10

Conclusion and future directions

10.1 Dissertation summary

In this dissertation we address the problem of statistical inference in infectious disease modeling. Specifically,

we examine the model classes of compartment models (CM) and agent-based models (AM), and we:

1. Relate statistical properties of CMs and AMs

2. Improve methodology for model selection within the SI and SIR-frameworks

3. Apply our improved theory and methodology to two case studies.

In Chapter 1, we introduce the problem and related work. We introduce epidemic modeling, using the

CMs and AMs as model classes. We briefly detail the history of these two classes and how the two classes

are sometimes combined together as hybrid models. There are few studies of how the statistical properties

of the two models are related to one another, and we improve upon this gap. Following that, we examine

related work with respect to parameter estimation and model selection within the CM and AM framework.

These include likelihood maximization methods, comparing models through measures of agent interaction,

and diagnostic plots. Finally, we examine studies relating to measles and Ebola, which are examined in

depth in the dissertation.

In Chapters 2-3, we address the first issue of relating statistical properties of CMs and AMs. We begin

by introducing the Kermack and McKendrick (1927) deterministic SIR equations. We then introduce a

stochastic CM that incorporates the deterministic SIR equations in a Binomial random draw where the

scaled deterministic SIR equations act as probability of transition from one state to the next. In Theorems

2.1-2.2 we calculate the expected value and variance, respectively, of the number of individuals in each state

of our Binomial model. In Eq. (2.5), we introduce a stochastic AM with a Bernoulli probability of transition.
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In contrast to the stochastic CM, the stochastic AM allows us to track individuals over time whereas the

CM only examines the total number of individuals in each state over time. In Theorem 2.3 we state our

main theoretical contribution that the Binomial CM and Bernoulli AM are equivalent in distribution, with

respect to the number of individuals in each state for each time step.

In Section 2.3, we extend our theory a more general case where we have K total states and the probability

of transition matrix D(t) has a specific form. We present a CM and AM with K total states such that the

CM and AM are equivalent in distribution in terms of the number of individuals in each state at a given

time. Together, we call the equivalent models the CM-AM pair.

In Chapter 3, we examine what are essential features of CMs and AMs to create more general CM-AM

pairs. We define a CM to be characterized by homogeneity of individuals within states and homogeneous

interaction between individuals in ssuceptible and infectious states. In Section 3.2, we show that any CM has

an equivalent AM and explore the consequences of violating the assumption of homogeneity of individuals

within groups. We also show in an example we call the “lock-step” model that independence of individuals is

not a requirement to have an equivalent AM. We then show that every AM has an equivalent CM, provided

we adjust the total number of states. The equivalence between general CMs and AMs demonstrates the

importance of the total number of states to use in an epidemic model and hence is an important step in

model selection.

We address the second issue of improvement in parameter and model selection in Chapter 4. We detail

novel methods to aid in selection of the total number of states to use in an epidemic CM or AM provided

the disease-level states are given. Specifically, for models in the SIR-framework, we present two novel visual

diagnostics to use in conjunction with other model selection techniques in order to select the best model. The

plots include transforming SIR data so that the slope of the best fit line corresponds to R0, the reproduction

number. This along with weighted linear regression through a plug-in variance estimate yields an empirical

95% coverage in our transformed SIR model. The second plot presents SIR data in the format of a ternary

plot that includes confidence regions and time scales to assess the fit of the data. Additionally, for the

SI-framework, we provide a statistical investigation specific to models within the SI-framework to quantify

whether individuals interact homogeneously “enough” in the sense that we can use a CM with fewer total

states in contrast to a CM or AM with more states and can still adequately model the epidemic.

In Chapters 5-9 we apply our theory and methodology to two real-world scenarios. The first scenario is

an outbreak of measles in Hagelloch Germany in the 1860s, and the second scenario is the Ebola outbreak

of 2014-2015 in Western District, Sierra Leone. The two outbreaks differ in scale (the Hagelloch outbreak is

much smaller than the Western District outbreak) and data features (the Hagelloch data has more detailed

demographic and interaction features than the Western District outbreak), and we analyze our methodology

in view of these two extremes.
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In Chapter 5, we explore the Hagelloch data, especially in regard to individual interaction features such

as household location and school class. We then fit models to the data and find that there is a difference

in infection rates before and day after 25 of the outbreak. The model we select has six total states and two

groups of individuals and estimate that the reproduction number for the epidemic 4.94 (95% CI: [4.68, 5.21]),

assuming all individuals act interact homogeneously and have the same rates of recovery and infection. This

estimate of R0 is much lower than the estimates presented in Anderson and May (1992) but is comparable

to the estimates of R0 in Getz et al. (2016).

Following our model selection and parameter estimation for the Hagelloch measles outbreak, in Chapters

6-7, we explore scenarios of our model using our CM-AM pair that may be examined when planning

prevention and intervention routines. In Chapter 6, we examine the more abstract scenario of the effects of

reducing βk, the infectivity of the disease for group k, without delving into the specifics of how βk is reduced.

We find that we can better prevent large-scale outbreaks by implementing reductions in βk sooner, rather

than later. More specifically, we find that we need to reduce βk by at least 50% to obtain a 25% reduction

in the final size of the epidemic. In our simulations, we also show that it is worthwhile in terms of final size

of the epidemic to implement preventions even one month into the epidemic.

In Chapter 7, we look at more tangible prevention routines with our AM which include individual isolation

and quarantine along with school closure. Again we find that we need to reduce βk by around 50% to see

a significant reduction in the final size of the epidemic (20% reduction in final size). We find isolation

and quarantine to be particularly effective as intervention techniques, even when allowing for a short delay

between the infectious period and beginning of isolation. One problem we repeatedly find is that the CIs

for our estimates of peak percent infectious, day of peak percent infectious, epidemic duration, and final

size have very large CIs, sometimes spanning the whole space of the estimate. One reason for this is small

population size and another important reason is that the probability of transition in the model we are using

is itself a random variable.

In Chapters 8-9, we examine the Ebola outbreak in Western District, Sierra Leone. The Western District

data is feature-poor compared to the Hagelloch data because we only have infection dates and age of infected

cases whereas in the Hagelloch data we have household information, school class information, and even the

purported infector ID. As such, we pursue more high level concepts as opposed to answering specific questions

about the Ebola outbreak. Specifically, we examine the importance of the value of the effective population

size N , sensitivity of the model results to initial locations of the first infections, and individual interaction

restrictions.

In Chapter 8 we examine the data, perform model selection, and estimate disease parameters. In contrast

to the Hagelloch outbreak, we also examine the importance of the effective population size N has on our

model. We select our best model to have one group of individuals with β = 0.16, γ = 0.12 and N =
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18, 768, which in context means that there is a community of approximately 18,768 individuals that behave

approximately homogeneously with infected agents.

In Chapter 9, we use our best fit CM-AM pair to examine the scenarios of homogeneous versus

heterogeneous agent interactions, sensitivity to initial location of infectors, and effective population size

along with the number of contacts each agent is assumed to have. We show how our AM can include spatial

spread and how important the transmission of the disease between individuals in our model. We also show

that the effective population size and number of contacts each individual has is very important both in terms

of modeling results but also in practice in terms of computer time and memory required.

Finally, in Chapter 10 we summarize the results of our dissertation and provide directions for future

work.

10.2 Future directions

Future directions include all three issues addressed in this dissertation: theoretical, methodological, and

practical.

Theoeretical questions include:

• Can we examine specific non-Binomial or Multinomial CMs? How does this effect the equivalent AM?

• Exploring the bias-variance tradeoff when selecting K∗, the optimal number of states used to model

the epidemic

• Using priors for the probability of transition, beginning with a conjugate β and extending to non-

parametric priors

• More general expected value and variance calculations for CMs where the probability of transition

follows either typical ODEs or Reed-Frost transitions

• How can we include the effective population size as a random variable in our models?

Methodological questions include:

• Can we extend the concept of quantifying whether populations are homogeneous enough to frameworks

beyond the SI disease-level states?

• Can we extend the ternary plot to a 3D plot for use with the SEIR, which is a very common choice in

disease modeling?

Pratical questions include:

• Model a present day measles outbreak using a heterogeneous population
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• Add hospitals and ETUs to the Ebola modeling

• Examine ring trials where we vaccinate contacts of the infectious and contacts of contacts

There are still many aspects to explore and refine when it comes to epidemic modeling with CM or AM

pairs, and we hope that the work presented here can be used to help prevent and eradicate infectious disease.
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by Lévy Noise. Journal of the American Statistical Association, 106(494):440–451. 11

146



Bobashev, G. V., Goedecke, D. M., Yu, F., and Epstein, J. M. (2007). A hybrid epidemic model: combining

the advantages of agent-based and equation-based approaches. In Proceedings of the 39th conference on

Winter simulation: 40 years! The best is yet to come, pages 1532–1537. IEEE Press. 7

Bradhurst, R. A., Roche, S. E., East, I. J., Kwan, P., and Garner, M. G. (2015). A hybrid modeling approach

to simulating foot-and-mouth disease outbreaks in Australian livestock. Frontiers in Environmental

Science, 3:17. 8

Brooks, L. C., Farrow, D. C., Hyun, S., Tibshirani, R. J., and Rosenfeld, R. (2015). Flexible modeling of

epidemics with an empirical bayes framework. PLOS Computational Biology, 11(8):1–18. 8, 9, 92

Brown, G. D., Oleson, J. J., and Porter, A. T. (2016). An empirically adjusted approach to reproductive

number estimation for stochastic compartmental models: A case study of two ebola outbreaks. Biometrics,

72(2):335–343. 11

Capaldi, A., Behrend, S., Berman, B., Smith, J., Wright, J., and Lloyd, A. L. (2012). Parameter estimation

and uncertainty quantication for an epidemic model. Mathematical Biosciences and Engineering, page

553. 92

Carley, K. M., Fridsma, D. B., Casman, E., Yahja, A., Altman, N., Chen, L.-C., Kaminsky, B., and Nave,

D. (2006). Biowar: scalable agent-based model of bioattacks. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 36(2):252–265. 15

Centers for Disease Control and Prevention (2018). Measles history. Available online at https://www.cdc.

gov/measles/about. 68, 69

Centers for Disease Control and Prevention (2019). Ebola virus disease. Available online at https://www.

cdc.gov/vhf/ebola/transmission/index.html. 115, 117

Chao, D. L., Halloran, M. E., Obenchain, V. J., and Longini, Jr, I. M. (2010). Flute, a publicly available

stochastic influenza epidemic simulation model. PLOS Computational Biology, 6(1):1–8. 6, 9

Chen, L.-C., Kaminsky, B., Tummino, T., Carley, K. M., Casman, E., Fridsma, D., and Yahja, A. (2004).

Aligning Simulation Models of Smallpox Outbreaks, pages 1–16. Springer Berlin Heidelberg, Berlin,

Heidelberg. 7

Chen, T. M. and Jamil, N. (2006). Effectiveness of quarantine in worm epidemics. In 2006 IEEE International

Conference on Communications, volume 5, pages 2142–2147. IEEE. 92

Chris, G., David, W., and R., H. D. (2012). A network-based analysis of the 1861 hagelloch measles data.

Biometrics, 68(3):755–765. 11

147

https://www.cdc.gov/measles/about
https://www.cdc.gov/measles/about
https://www.cdc.gov/vhf/ebola/transmission/index.html
https://www.cdc.gov/vhf/ebola/transmission/index.html


Cohen, J. (2019). Ebola outbreak continues despite powerful vaccine. Science, 364(6437):223–223. 114
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Appendix A

Hagelloch EDA

We investigate whether we suspect where and how any heterogeneities in susceptibility or interacting may

occur. Neal and Roberts (2004) use heterogeneties in infection based household, class level, and physical

distance between pairs of individuals along with a global rate of infection. As such, we focus on those

attributes here.

The initial reproduction number R0 measures the intensity of an initial outbreak by counting the

generations of a disease (as opposed to infections over time like in Fig. 5.2). In Figure A.1, we measure

the average number of infections generated by the children who become infectious at time t. We see that at

about 2 weeks in, we observe a large spike in the average generations produced by a single infectious child.

In Figure A.2, we plot the state of each child over time where the color represents the state of the child

at that time. There are two different sets of bars, the first with darker hues and the second with lighter hues.

These different sets of bars represent a change in household ID of the children, i.e. children are grouped

by household. This graph makes clear that household is a very important variable in modelling the spread

of measles since we see that the red sections for each family overlap for nearly all children in all families,

meaning that an infection passes through a household in a consecutive amount of time. There are exceptions

to this, however. For example, the top most family has 4 children, two of which are infectious at the same

time, then a small gap, and then the other two children become infected. This shows that household can

account for most of the spread of the disease of children in the same family but not for all of it.

Besides sibling-sibling transmission, within-class transmission is important in the spread of this epidemic.

The network of infections is plotted in Figure A.3 where the nodes are children (with location of the nodes

overlaid on household location) and the nodes are colored by class. In the bottom of the figure, the network

is faceted to show the within-class transmission of the disease. We see that a boy in 1st class purportedly

infected 26 of his classmates between November 21 and November 25. For the 1st class, 27 out of 30 were

infected by another 1st classmate. For the second class, 48 out of 68 were infected by a direct classmate.
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Figure A.1: The average number of infections generated by children who become infectious at time t with a
Loess smoother and 95% CI plotted.
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For the pre-schoolers, only 34 out of 90 children were infected by another pre-schooler. We emphasize that

pre-school here means those too young for school and is not a “class” in the usual sense.

●●●
●

●●

●

●●

●

●

●●

●●

●●●

●●●●●●●

●

●

●

●●●● ●●

●

●●●

●

●

●

●●●

●●●

●

●

●

●

●●
● ●

●●

●●●

●●●

●●●

●

●

●

●

●

●

●

● ●

●

●●●●

●

● ●●

●

●

●●

●

●●●●

●

●

●●

●●

● ●

●

●

●

●

●●●
●

●

●●
●

●

●

● ●●● ●
●●

●

●●

●

●

●● ●●

●

●

● ●

●●

● ●

●

●

●
●●●

●●

●
●

●

●●●
●

●●●●

●●

●

●
●

●
●

●

●

●

●● ●

●

● ●●

●

●●●● ●●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●
●

●

●

●● ●
●

●
●●

●

●

●● ●

●

●

●

●

●●

●●

●●

●●●

●●

●●

●

●●

●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

1st class 2nd class Pre−school

Class ● ● ●1st class 2nd class Pre−school

Network of Infections

Figure A.3: (Top) Network of infections where nodes (children) are plotted by their household location.
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individually by class. Nodes are still household locations, rescaled.

The number of infections from an infector who is both a sibling and a classmate is 19. Of the 184 children

where the purported infector was recorded, 167 (∼ 90%) were infected by either a sibling or direct classmate.

Of those who were not infected by a sibling or classmate, all but two were at least as young or younger than

their infector, with the median difference of the age of the infector and the infectee being 6 years, meaning

the older children in this group were giving the disease to the younger children.

We looked into the group of 21 children who were infected by neither sibling nor classmate. We ruled

out close in age but different classes, family name relationships, and siblings of classmates being the cause
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of these infections. Overall, 90% of the transmission can be be accounted for by the network structure of

the siblings and classmates.

In Figure A.4, we plot the date of the appearance of the measles rash vs. the date of the appearance of

the first symptoms, colored by class. A mixture of children from different classes are infected during the first

15 or so days of the epidemic. The disease then seems to infect the 1st class and soon after the 2nd class. The

pre-school class seems to become infected last. Also from this graph, we see a strong positive relationship

between the initial symptom appearance date and rash appearance date, with the rash appearing on average

3.94 (sample error: 1.74) days after the initial symptoms.
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