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Studying infectious disease is important because...

e You are getting credit for this class (utility)
e You or someone you have known has experience being sick (empathy)

e Infectious disease has a huge impact on the world around us

o Lives

o Time
o Money
o Media

So why wouldn’t we make a statistical model?



A series of unfortunate events (to be avoided)

1. Ask the wrong question
o E.g. Ask what is RO when we really want Rt

2. Use the wrong model
o E.g. modeling spread of disease assuming everyone acts approximately the same

3. Make the wrong (statistical) assumptions
o E.g. Assuming the Central Limit Theorem applies when it does not

4. Take the wrong (optimization) paths
o E.g. STAN vs. optim() vs. PRISM vs. SASS vs. next big thing

5. Infer the wrong conclusions

o E.g.vaccines cause autism 3
e



We need reliable epidemic models

e We want to predict who, what, where, and when a disease will spread
e We want to infer how and why disease spreads
e Whatis reliable?

e What is reliable enough?



Some criteria for reliable models

1.  Reproducibility
2. Plausibility
3. Diagnostics and model interrogation

4. Fitting data to model vs. fitting model to data



Exploratory data analysis is important

e What does your data look like?
o Does the data tell the story?
o (Are we sure it’s the true story?)

e What are we looking for?

e What factors can be skewing our
analysis?



Ex. 2019-nCoV - Coronavirus.

e What would you like to see?



How people are visualizing spread of 2019-nCoV

ASIA PACIFIC Ehe New Pork Times
least 1,869 people have died, all but five in mainland China.
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Prediction: CDC Yearly Influenza Forecasting Contest

Statistical methods to predict the following

O

O O O O

Peak incidence

Peak day

Next three time points percent influenza like illness (ILI)
For 50 states and DC

For 28 military bases

Over 30 teams contribute

(@)

Carnegie Mellon University’s DELPHI group led by Dr. Roni Rosenfeld has had leading forecasts

now for 5 vears
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https://www.cdc.gov/flu/weekly/flusight/index.html
https://delphi.cmu.edu/
https://www.cdc.gov/flu/weekly/flusight/index.html
https://www.cdc.gov/flu/weekly/flusight/index.html

Available Data to make forecasts include

CDC’s reports of ILI for each state up to the given time period
o The data is constantly changing!

Google Flu Trends

o (requires special permission)

Wikipedia and Twitter data

o Manually scraped and cleaned from the web

Weather
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https://www.google.org/flutrends/about/

Methods used for prediction

EpiCast.org (from DELPHI group)

National [all u.s. states and Territories]

Draw your forecast by clicking and dragging across the chart below. @ |& Save & Continue
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Some methods of prediction

e Kalman Filters
e Empirical Bayes using past flu seasons
e Time series

e Climate-based models
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How are prediction models validated?

e |nlinear regression, e.g. we have a data that are independent of one another
o Training and test sets of data, easy cross-validation (CV), or bootstrapping

e But for infectious disease,
o Data setis small (e.g. only 52 points for flu in a year)
o Very dependent on previous time steps

How can we assess our model performance?

14



Some possible solutions for validation

e Fit model to past/current data. Test on future
® Leave one-season out cross-validation

e A good plot is hard to find
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Leave one season out cross-validation

e Great for seasonal/cyclical/periodic diseases
e Assumes independence between seasons

e Requires a number of seasons to already be recorded
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Do prediction models have issues?

e Overfitting!

e Many (non-parametric) methods are uninterpretable
o With respect to the mechanistic processes of disease transmission

e Prediction is really, really hard

e Where does “machine learning” fit in?
o Sometimes associated with very large N (observations) or very large P (parameters)
o Neither of which we have
m  Not yet anyway

17



Predicting coronavirus: ongoing work

o Scientists are racing to model the next moves of a coronavirus that’s still hard to predict

Scientists are racing to model the next moves of a
coronavirus that's still hard to predict

By Jon Cohen | Feb. 7,2020, 6:15 PM

[ https://www.scientificamerican.com/article/heres-how-computer-models-simulate-the-future-spread-of-new-coronavirus/

COMPUTING

Here’s How Computer Models
Simulate the Future Spread of
New Coronavirus

They aim for clarity amid confusion surrounding the outbreak

By Jeremy Hsu on February 13. 2020 18


https://www.sciencemag.org/news/2020/02/scientists-are-racing-model-next-moves-coronavirus-thats-still-hard-predict
https://www.scientificamerican.com/article/heres-how-computer-models-simulate-the-future-spread-of-new-coronavirus/

Which model(s) do we trust??

e If more models agree, do we trust these more?
e What if one model predicted a certain point better than the others?

e What would you do?
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Parametric models and inference

e Using models to explain the process of transmission, not just predict

e Common parameters of interest

RO - the initial reproduction number

Beta - average rate of infection

Gamma - average rate of recovery

Omega - the serial interval

K - number of sub-groups that behave differently
Final size

Outbreak duration

Vaccination threshold

O O O O O O O O
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The biggest challenge is making the model

e Specify how and why a disease moves through a population

e “A Thousand and One Epidemic Models” (Hethcote 1994)

o Epidemiological compartment structure, i.e. states (susceptible, infectious, recovered)
o Incidence and distribution of waiting times (transition egs.)
o Demographic structure (heterogeneity of population)

o Epidemiological-interactions (vectors, mutations, interventions, etc.)
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Kermack and McKendrick SIR Model (discrete time)

S - number of susceptible at time t

| - number of infectious at time t 4

A =-5xp4
R - number of recovered at time t
N = total number of people (fixed) Al — £
] - average infection rate

AR __
Y - average recovery rate k. NE o I % R

Typically, (S(0), I(0), R(0)) are known



Epidemiological states
- S(t) - # Susceptible individuals at t
- I(t) - # Infectious individuals at t
- R(t) - # Recovered individuals at t

Incidence and distributions

At

Al
) A

AR

Demographics and interactions
- [ —rate of infection
- ~ — rate of recovery
- N - fixed population size

- 5(0),1(0), R(0) known
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An example of a K&M SIR Model

Simulated sample ave. and calculated expected values
L = 5000, N = 1000, S(0) = 950, 1(0) = 50, B = 0.10, y = 0.03 Critical value?

RO=11/y=3.33
(“R-naught”)

-
o

RO - the initial reproduction
number

w
o

DEF: Number of expected
infections when a single
infector is introduced to an
entirely susceptible
population (Anderson and
0 25 50 75 100 May 1992)

Time

% of population in state

fal
o

Expected value type —— Calc. ---- Sims. State —— S —— 1 R
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Adding stochasticity - one example

Zt—l,S|St—17 I; 1 ~ Binomial <St—1, B
Zi—1,r|St—1,11—1 ~ Binomial (I;_1,7)
St |St—1,14—1 = St—1 — Zy_1.5

It|Si—1,lt—1 =N — S — R;

Ry |Si—1,1It—1 = Ri_1+ Zi_1 R,

It —1)
N

)

~
o

% of Individuals

oo
(52}

Simulations of SIR
N =1000, B =0.50, y=0.25, Sp = 950, I = 50

CM

0 10 20 30 40 50
Time

Ave. and 95% CI . S . IR



What can RO tell us?

Pros

e “Arguably the most important quantity in
the study of epidemics” (Heesterbeek
2002)

Tells us proportion to vaccinate 1-1/R0O
Tells us chance of an outbreak

Can compare diseases to one another
One number summary

Cons

Plagued by recent criticism
o  Does not tell “full’ story
o Does not account for dynamic parameters
o Model dependent

No standard way to estimate
Confusion of whether it contains
preventive measures

Property of the Model!!!
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RO is a property of the model! SEIR vs. SIR

A disease passes through a population,
Creates (S(t), E(t), I(t), R(t))
Scientist A observes (S(t), E(t), I(t), R(t)) (correct SEIR)
Scientist B observes (S(t) + E(t), I(t), R(t)) (incorrect SIR)

Both estimate RO
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RO is a property of the model! SEIR vs. SIR

SEIR/SIR (XEYZ/XYZ) Curves
N = 1. 00e+04; B=0. 06; y= 0. 03; u= 0. 01; (X(0),E(0),Y(0))= (9. 500e+03, 0, 5. 0e+02)
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RO is a property of the model! SEIR vs. SIR

A
Estimates of R,

bagn;ls; A

2.001

1.751
Scientist B

Type
—e— SEIR

Estimate
=
o

1.25] SIR

S

1.001 10 days exposure time

0.75+

0.00 0.05 0.10 0.15 0.20 0.25
1)

1/(Latent/Exposed time)
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RO estimates for common diseases

Disease RO Sources

Coronavirus ??

Measles (6-12) (Guerra et al. 2017)

Zika 3.80 (2.40, 5.60) (Towers et al. 2016)

Spanish Influenza 1918 1.32 (1.29-1.36) (Camara et al. 2009)
1.80 (1.47-2.27) (Biggerstaff et al. 2014)

Seasonal Influenza 1.28 (1.19-1.37) (Biggerstaff et al. 2014)

Pandemic Influenza 2009 1.46 (1.30-1.70) (Biggerstaff et al. 2014)

Ebola (Guinea)

1.51 (1.50-1.52)

(Althaus 2014)
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https://www.sciencedirect.com/science/article/pii/S1473309917303079
https://www.sciencedirect.com/science/article/pii/S1755436516300330
https://www.sciencedirect.com/science/article/pii/S0213005X12700988
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-480
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-480
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-480
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169395/

Accessible software for infectious disease modelling

- Partially observed Markov processes
(An R package)
- kingaa.github.io/pomp
-  https://kingaa.qithub.io/pomp/vignettes/pompjss.pdf

-  EpiModel

- https://www.epimodel.org/

Plotting

Next we plot the results of the model to demonstrate several plot arguments. First, the par function is used to change some
default graphical options. In the left plot, the popfrac=FALSE argument plots the compartment size (rather than prevalence) and
alpha increases the transparency of the lines for better visualization. By default, the plot function will plot the prevalences for all
compartments in the model, but in the right plot we override that using the y argument to specify that disease incidence (the
si.flow element of the model object) should be plotted

par(mar = c(3.2, 3, 2, 1), mgp = c(2, 1, @), mfrow = c(1, 2))
plot(mod, popfrac = FALSE, alpha = .5,
lud = 4, main = "Compartment Sizes")
plot(mod, y = "si.flow", lud = 4, col =
main = "Disease Incidence”, legend = "n")

rebrick”,

Compartment Sizes Disease Incidence

é N “" e s.num
\ o .num o
= r.num = 7]
S -
@©
=} N\ — 0
E 8 — — 8 g -
£ g
z8 4 z
=+ B —————————
7 w6 =l
=}
3 4
I .
o - o -
T T T T T 1 I T T T T 1
0 100 200 300 400 500 0 100 200 300 400 500
Time Time

Itis possible to specify a single line color, a vector of colors, or a color palette using the col argument, and the legend options
are set using the legend argument.
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https://kingaa.github.io/pomp/vignettes/pompjss.pdf
https://www.epimodel.org/

Takeaways from RO

e Way to compare severity of diseases with a one number summary

e Take with a grain of salt
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Compartment models

e Origins from pharmacokinetics - tracked blood flow through different
compartments of heart

e Describes how objects in discrete compartments/states move from one state
to the next

e [Essential parts
o Disease states
births/deaths (population dynamics)
Sub-groups? (females vs. males, children vs. adults)
Transitions between states

o O O



Some CM examples

Sl: susceptible-infectious.

SIR: susceptible-infectious-recovered

SIS: susceptible-infectious-susceptible

SEIR: susceptible-exposed-infectious-recovered

SEIFHR: susceptible-exposed-infectious-funeral-hospitalized-recovered

34



The Fundamental Assumption of CMs

Individuals in the same compartment at time t are indistinguishable from one another
Implications:

e Cannot track individuals through a disease
e Need individuals in the same state to act approximately in the same manner

e Don’t quite need independence of individuals but close to it
o ‘exchangeability’
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Fitting a CM to data

e | have an SIR model
o Butdol have SIR data?

Data: What | want

Data: What | have

Time

# New cases

Time #S # #R
0 99 1
1 94 5
2 84 7

10
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Agent-based models

e Like the SIMs but less fun

ID Country Year Occupation Age Gender Environment ID Environment Capacity Latitude Longitude
P1 usS. 2010 Statistician 30 M E1 E1 PPG Paints Arena 100 40.4396 —79.9893
P2 u.s. 2010 Data scientist 54 F E2, E3 E2 Ballard High School 4000 40.4474 —79.9498
P3 usS. 2010 Bagpiper 56 M E1, E2, E3 E3 Carnegie Mellon 50 40.4428 —79.9430
Example of agents and their environment
37



Agent-based models: essential parts

Agents _,,7,' :
Environment L
Interactions

You make the rules!

Roller Coaster Tycoon. An agent-based model?
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Limitations and examples of agent-based models

e They can be glacially slow

e Model calibration?

o Do our simulations mean anything?

o  The problem of ‘docking’ (Epstein 2007)

e There are some very interesting ABMs and researchers out there

Los Alamos National Lab (TRANSIMS and more)
University of Virginia Biocomplexity Institute (See this article)
FRED
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https://www.osti.gov/biblio/88648
http://cos.gmu.edu/cds/wp-content/uploads/sites/25/2018/04/Waldrop-in-Science-1.pdf
https://fred.publichealth.pitt.edu/

CMs vs AMs

Quality CM AM
1. Interpretable v o/
2. Accessible v
3. Modular v o/
4. Individual info v o/
5. Fast computer run time v
6. Low computer memory v o/
7. Theory v o/
8. Parameter estimation v o/
9. Statistical software v /

Are these classes statistically the same?

40
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Theorems - yes, they are the same in some ways

Theorem 1: Given deterministic transition matrix D(t) of size K x K, there exists a
stochastic CM-AM pair such that X £ XA and the models are unbiased w.rt D(t)

- K'is the number of states

- Djj(t) is the non-negative # of individuals moving from state i to j from time t to t + 1
- Row sums are total number individuals moving out of state i

- Column sums are total number of individuals moving into state j

- D(t) — D'(t) gives back the original difference equations

Ex. SIR D(t):
S(t) — gl gl g

D(t) = 0 I(t) — I(t)yy  I(t)y

0 0 R(1)
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Hagelloch -- measles outbreak in 1861

- Highly infectious childhood disease (Rq = 19)
(Anderson & May, 1992)

- Influenza Ro =~ 1.2

- Prodromes - initial symptoms

- high fever, cough, runny nose, red, watery eyes MEASLES
- 2-3 days after, tiny white spots in mouth i

rash

- Measles rash and high fever: 3-5 days after infarmatn THE MEASLES VIRUS
symptoms begin respiairy ract ~ g

- 2-3 days after rash, child recovers

- CDC reports person is infectious +4 days after
rash appearance

- Lifelong immunity after infection

42




Measles: data from R surveillance package

ID Household Class Age Sex | R Infector
il 61 1st 7 F 22 29 45
2 61 1st 6 F 23 32 45
3 62 pre-K 4 F 29 37 NA
4 63 2nd 13 M 27 32 180
5 63 1st 8 F 22 31 45
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State of Children
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Scenario 1

1. We have estimate(s) of B the infection parameter
2. Assume we can reduce infectivity to p - B

3. How would outbreak have changed?
Analysis 1

1. Initialize our CM-AM pair with estimates
2. Vary p in our simulations

3. Analyze resulting outbreaks
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Hagelloch AM simulation results
From t=0 onward

Best fit model

120+

(o.°]
o

=
o

Final size (%)

0 10 20 30 40 50
Peak % infectious over all days

1

025 050 0.75 1.00




- What is K*, the minimal number of states?
« K*=6

- What is Ry?

- Between 4-5.

- What is the associated CM-AM pair?
- S?1°R? with groups before and after t = 25

- What would have happened...
- if we reduced the infectivity of the disease?
. Want to reduce /3 by about half
- if we isolated infectious individuals?
- Reduce size of epidemic, even if isolated 8 days after initial infection
- if we shut down the school?
- Inconclusive results due to assumptions of model
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Epidemic disease modelling is a thankless task

Did my model work?

Could we do anything to

stop the disease? Undesirable Outcome

Nothing bad happened. Undesirable Outcome
Did we need you?
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Upshot of our brief tour of all of infectious diseases

e There are many good resources/classes/software out there
o  But the individual effort is more important than ever

e Make good decisions

e Sensitivity analysis and uncertainty analysis are vital
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How would you like to model coronavirus?
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Reconstructing disease transmission chains

Branching Processes:

- Concept of generations
- time is non-factor

How we do model this? /\
- Classically assumes infinite

population-
- geometric distribution of number

of infections
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Chain Binomials - taking into account finite population

Chain Binomials:
P(#new inf =y) = Binomial(N, 1 - (1-p)"l)
N = number of susceptibles

p = probability of infection from one
infectious contact

| = number of infectious contacts
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TBin MD

TB transmisison map in MD 2003-2009

Cross—county cluster frequency




TB transmission example

Example of TDB transmission among 4 people

Time

0

Person 1D

Y ®infection time O detection time —— infection path -------- » lag time
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Overarching issues with transmission trees

- Computational tractability: number of trees of size n is n(n-2) - yikes!
- 107(10-2) =100 million!!
- 257%(23) =10"32 (forget about it)
- Need to do approximate sampling, MCMC, ABC, or other

- Time vs. generations
- Could have infections occurring at same time but in completely different generations
- Treatment date != infection date
- Latent/exposure periods?
- Underreporting
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