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Studying infectious disease is important because...

● You are getting credit for this class (utility)

● You or someone you have known has experience being sick (empathy)

● Infectious disease has a huge impact on the world around us
○ Lives
○ Time
○ Money
○ Media

So why wouldn’t we make a statistical model?
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A series of unfortunate events (to be avoided)

1. Ask the wrong question
○ E.g. Ask what is R0 when we really want Rt

2. Use the wrong model
○ E.g. modeling spread of disease assuming everyone acts approximately the same

3. Make the wrong (statistical) assumptions
○ E.g. Assuming the Central Limit Theorem applies when it does not

4. Take the wrong (optimization) paths
○ E.g. STAN vs. optim() vs. PRISM vs. SASS vs. next big thing

5. Infer the wrong conclusions
○ E.g. vaccines cause autism 3



We need reliable epidemic models

● We want to predict who, what, where, and when a disease will spread

● We want to infer how and why disease spreads

● What is reliable?

● What is reliable enough?
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Some criteria for reliable models

1. Reproducibility

2. Plausibility

3. Diagnostics and model interrogation

4. Fitting data to model vs. fitting model to data
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Exploratory data analysis is important

● What does your data look like?
○ Does the data tell the story?
○ (Are we sure it’s the true story?)

● What are we looking for?

● What factors can be skewing our 
analysis?
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Ex. 2019-nCoV - Coronavirus.

● What would you like to see?
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How people are visualizing spread of 2019-nCoV
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Prediction: CDC Yearly Influenza Forecasting Contest

● Statistical methods to predict the following
○ Peak incidence
○ Peak day
○ Next three time points percent influenza like illness (ILI)
○ For 50 states and DC
○ For 28 military bases

● Over 30 teams contribute
○ Carnegie Mellon University’s DELPHI group led by Dr. Roni Rosenfeld has had leading forecasts 

now for 5 years
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https://www.cdc.gov/flu/weekly/flusight/index.html
https://delphi.cmu.edu/
https://www.cdc.gov/flu/weekly/flusight/index.html
https://www.cdc.gov/flu/weekly/flusight/index.html


Available Data to make forecasts include

● CDC’s reports of ILI for each state up to the given time period
○ The data is constantly changing!

● Google Flu Trends 
○ (requires special permission)

● Wikipedia and Twitter data
○ Manually scraped and cleaned from the web

● Weather
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https://www.google.org/flutrends/about/


Methods used for prediction

● EpiCast.org (from DELPHI group)
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Some methods of prediction

● Kalman Filters

● Empirical Bayes using past flu seasons

● Time series

● Climate-based models
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How are prediction models validated?

● In linear regression, e.g. we have a data that are independent of one another
○ Training and test sets of data, easy cross-validation (CV), or bootstrapping

● But for infectious disease, 
○ Data set is small (e.g. only 52 points for flu in a year)
○ Very dependent on previous time steps

How can we assess our model performance?
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Some possible solutions for validation

● Fit model to past/current data.  Test on future

● Leave one-season out cross-validation

● A good plot is hard to find
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Leave one season out cross-validation

● Great for seasonal/cyclical/periodic diseases

● Assumes independence between seasons

● Requires a number of seasons to already be recorded
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Do prediction models have issues?

● Overfitting!

● Many (non-parametric) methods are uninterpretable 
○ With respect to the mechanistic processes of disease transmission

● Prediction is really, really hard

● Where does “machine learning” fit in?
○ Sometimes associated with very large N (observations) or very large P (parameters)
○ Neither of which we have

■ Not yet anyway
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Predicting coronavirus:  ongoing work

● Scientists are racing to model the next moves of a coronavirus that’s still hard to predict

● https://www.scientificamerican.com/article/heres-how-computer-models-simulate-the-future-spread-of-new-coronavirus/
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https://www.sciencemag.org/news/2020/02/scientists-are-racing-model-next-moves-coronavirus-thats-still-hard-predict
https://www.scientificamerican.com/article/heres-how-computer-models-simulate-the-future-spread-of-new-coronavirus/


Which model(s) do we trust??

● If more models agree, do we trust these more?

● What if one model predicted a certain point better than the others?

● What would you do?
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Parametric models and inference

● Using models to explain the process of transmission, not just predict

● Common parameters of interest
○ R0 - the initial reproduction number
○ Beta - average rate of infection
○ Gamma - average rate of recovery
○ Omega - the serial interval
○ K - number of sub-groups that behave differently
○ Final size 
○ Outbreak duration
○ Vaccination threshold
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The biggest challenge is making the model

● Specify how and why a disease moves through a population

● “A Thousand and One Epidemic Models” (Hethcote 1994)
○ Epidemiological compartment structure, i.e. states (susceptible, infectious, recovered)

○ Incidence and distribution of waiting times (transition eqs.)

○ Demographic structure (heterogeneity of population)

○ Epidemiological-interactions (vectors, mutations, interventions, etc.)
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Kermack and McKendrick SIR Model (discrete time)

S - number of susceptible at time t

I - number of infectious at time t

R - number of recovered at time t

N = total number of people (fixed)

Ꞵ - average infection rate

𝝲 - average recovery rate

Typically, (S(0), I(0), R(0)) are known

22



23



An example of a K&M SIR Model
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Critical value?

R0 = Ꞵ / 𝝲 = 3.33
(“R-naught”) 

R0 - the initial reproduction 
number

DEF:  Number of expected 
infections when a single 
infector is introduced to an 
entirely susceptible 
population (Anderson and 
May 1992)



Adding stochasticity - one example
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What can R0 tell us?

Pros

● “Arguably the most important quantity in 
the study of epidemics” (Heesterbeek 
2002)

● Tells us proportion to vaccinate 1 - 1/R0
● Tells us chance of an outbreak
● Can compare diseases to one another
● One number summary
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Cons

● Plagued by recent criticism
○ Does not tell ‘full’ story
○ Does not account for dynamic parameters
○ Model dependent

● No standard way to estimate
● Confusion of whether it contains 

preventive measures

● Property of the Model!!!



R0 is a property of the model! SEIR vs. SIR
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A disease passes through a population, 

Creates (S(t), E(t), I(t), R(t))

Scientist A observes (S(t), E(t), I(t), R(t)) (correct SEIR)

Scientist B observes (S(t) + E(t), I(t), R(t)) (incorrect SIR)

Both estimate R0



R0 is a property of the model! SEIR vs. SIR
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Scientist A

Scientist B



R0 is a property of the model! SEIR vs. SIR
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Scientist A

Scientist B

1/(Latent/Exposed time)

10 days exposure time



R0 estimates for common diseases
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Disease R0 Sources

Coronavirus ??

Measles (6-12) (Guerra et al. 2017)

Zika 3.80 (2.40, 5.60) (Towers et al. 2016)

Spanish Influenza 1918 1.32 (1.29-1.36)
1.80 (1.47-2.27)

(Camara et al. 2009)
(Biggerstaff et al. 2014)

Seasonal Influenza 1.28 (1.19-1.37) (Biggerstaff et al. 2014)

Pandemic Influenza 2009 1.46 (1.30-1.70) (Biggerstaff et al. 2014)

Ebola (Guinea) 1.51 (1.50-1.52) (Althaus 2014)

https://www.sciencedirect.com/science/article/pii/S1473309917303079
https://www.sciencedirect.com/science/article/pii/S1755436516300330
https://www.sciencedirect.com/science/article/pii/S0213005X12700988
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-480
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-480
https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-480
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169395/


Accessible software for infectious disease modelling

- Partially observed Markov processes 
(An R package)

- kingaa.github.io/pomp
- https://kingaa.github.io/pomp/vignettes/pompjss.pdf

- EpiModel
- https://www.epimodel.org/
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https://kingaa.github.io/pomp/vignettes/pompjss.pdf
https://www.epimodel.org/


Takeaways from R0

● Way to compare severity of diseases with a one number summary

● Take with a grain of salt
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Compartment models

● Origins from pharmacokinetics - tracked blood flow through different 
compartments of heart

● Describes how objects in discrete compartments/states move from one state 
to the next

● Essential parts
○ Disease states
○ births/deaths (population dynamics)
○ Sub-groups? (females vs. males, children vs. adults)
○ Transitions between states
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Some CM examples

SI: susceptible-infectious. 

SIR: susceptible-infectious-recovered

SIS: susceptible-infectious-susceptible

SEIR: susceptible-exposed-infectious-recovered

SEIFHR: susceptible-exposed-infectious-funeral-hospitalized-recovered
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The Fundamental Assumption of CMs

Individuals in the same compartment at time t are indistinguishable from one another

Implications:

● Cannot track individuals through a disease

● Need individuals in the same state to act approximately in the same manner

● Don’t quite need independence of individuals but close to it
○ ‘exchangeability’
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Fitting a CM to data

● I have an SIR model
○ But do I have SIR data?
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Time # S # I # R

0 99 1 0

1 94 5 1

2 84 7 9

Data:  What I want Data:  What I have

Time # New cases

0 1

1 5

2 10



Agent-based models

● Like the SIMs but less fun
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Example of agents and their environment



Agent-based models: essential parts

● Agents
● Environment
● Interactions
● You make the rules!
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Roller Coaster Tycoon.  An agent-based model?



Limitations and examples of agent-based models

● They can be glacially slow

● Model calibration?

○ Do our simulations mean anything?

○ The problem of ‘docking’ (Epstein 2007)

● There are some very interesting ABMs and researchers out there
■ Los Alamos National Lab (TRANSIMS and more)
■ University of Virginia Biocomplexity Institute (See this article)
■ FRED
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https://www.osti.gov/biblio/88648
http://cos.gmu.edu/cds/wp-content/uploads/sites/25/2018/04/Waldrop-in-Science-1.pdf
https://fred.publichealth.pitt.edu/


CMs vs AMs
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Theorems - yes, they are the same in some ways
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Hagelloch -- measles outbreak in 1861
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Measles: data from R surveillance package
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Epidemic disease modelling is a thankless task
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Did my model work?

Y N

Could we do anything to 
stop the disease?

Undesirable Outcome

Y N

Nothing bad happened. 
Did we need you?

Undesirable Outcome



Upshot of our brief tour of all of infectious diseases

● There are many good resources/classes/software out there
○ But the individual effort is more important than ever

● Make good decisions

● Sensitivity analysis and uncertainty analysis are vital

50



How would you like to model coronavirus?
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Reconstructing disease transmission chains
Branching Processes:

- Concept of generations
- time is non-factor

How we do model this?

- Classically assumes infinite 
population-

-  geometric distribution of number 
of infections
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Chain Binomials - taking into account finite population

Chain Binomials:

P(#new inf = y) = Binomial(N, 1 - (1-p)^I)

N = number of susceptibles

p = probability of infection from one 
infectious contact

I = number of infectious contacts
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TB in MD
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TB transmission example
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Overarching issues with transmission trees

- Computational tractability: number of trees of size n is n^(n-2) - yikes!
- 10^(10-2) = 100 million!!
- 25^(23) ≈ 10^32 (forget about it)
- Need to do approximate sampling, MCMC, ABC, or other

- Time vs. generations
- Could have infections occurring at same time but in completely different generations
- Treatment date != infection date
- Latent/exposure periods?
- Underreporting
-
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