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Goal: Combine two goodmodels into a better one
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Studying infectious disease is important
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Compartment vs. Agent-basedModels



Compartment models (CMs) describe how individuals evolve over time

Assumptions (Anderson and May 1992) :

1. Homogeneity of individuals

2. Law of mass action
I(t+ 1) ∝ I(t)
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Agent-basedmodels (AMs) simulate the spread of disease

Assumptions (Helbing 2002):

1. Heterogeneity of agents

2. Model adequately reflects reality
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CMs and AMs: a side by side comparison

CMs

∙ Equation-based
∙ Computationally fast
∙ Homogeneous individuals
∙ No individual properties

AMs

∙ Simulation-based
∙ Computationally slow
∙ Heterogeneous individuals
∙ Individual properties
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Combining the two together

(Bobashev 2007, Banos 2015, Wallentin 2017)

∙ ad hoc approaches

∙ perspective from non-statisticians

Goal: Create a statistically justified hybrid model
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CurrentWork



There are twomain avenues of improvement

1. Quantifying how similar CMs and AMs are

2. Speeding up AM run-time
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The SIRmodel: a detailed look

(Kermack and McKendrick 1927) 
dS
dt = −βSI

N
dI
dt = βSI

N − γI
dR
dt = γI

∙ β – rate of infection
∙ γ – rate of recovery
∙ N – total population size
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Our stochastic CM approach

Ŝ(t+ 1) = Ŝ(t)− st
R̂(t+ 1) = R̂(t) + rt
Î(t+ 1) = N− Ŝ(t+ 1)− R̂(t+ 1),

with

st+1 ∼ Binomial
(
Ŝ(t), βI(t)N

)
rt+1 ∼ Binomial

(̂
I(t), γ

)
.
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Our stochastic AM approach

For an agent xn(t), n = 1, 2, . . . ,N, the forward operator for t > 0 is

xn(t+ 1) =


xn(t) + Bernoulli

(
βI(t)
N

)
if xn(t) = 1

xn(t) + Bernoulli (γ) if xn(t) = 2
xn(t) otherwise

.

where xn(t) = k, k ∈ {1, 2, 3} corresponds to state S, I, and R, respectively

Let the aggregate total in each compartment be

X̂k(t) =
N∑

n=1
I{xn(t) = k}
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Themeans overlap
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The distributions look the same

15



These approaches are equivalent

Theorem

Let the CM and AM be as previously described. Then for all t ∈ {1, 2, . . . , T},

Ŝ(t) d
= X̂S(t) (1)

Î(t) d
= X̂I(t)

R̂(t) d
= X̂R(t).
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We can compare CM/AM pairs and AM/AM pairs by fitting the underlying model
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AMs are appealing because they can be runmultiple times

∙ Simulate an epidemic en masse!

∙ A run - same initial parameters, different random numbers

∙ Runs (L) are independent of one another =⇒ parallelization

∙ Roughly, the variance of compartments ↓ when N, L ↑

Goal: Improve computation time without sacrificing statistical details

18



AMs are appealing because they can be runmultiple times

∙ Simulate an epidemic en masse!

∙ A run - same initial parameters, different random numbers

∙ Runs (L) are independent of one another =⇒ parallelization

∙ Roughly, the variance of compartments ↓ when N, L ↑

Goal: Improve computation time without sacrificing statistical details

18



There is a tradeoff between the number of agents and number of runs
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The calculations show that the variance scales

∙ Note that for a given β and γ, if S1(0)
N1

= S2(0)
N2

=⇒ S1(t)
N1

= S2(t)
N2

∙ V
[
Ŝ(t+ 1)

]
= S(t)(1− pt)pt + (1− pt)

2V
[
Ŝ(t)

]
∙ V[Ŝ2(t)] = N2

N1
V[Ŝ1(t)]

V
[

1
L1
∑

runs ℓ
Ŝ1(t)
N1

]
V
[

1
L2
∑

runs ℓ
Ŝ2(t)
N2

] =
L2N2

2
L1N2

1
· V[Ŝ1(t)]
V[Ŝ2(t)]

=
L2N2
L1N1

.

We can replace agents with runs!
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Through paralellization, we can get a speed-up without losing statistical information
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Future work



There is more work to be done: short-term

∙ Implementation of current methods in FRED
∙ FRED - an open source, supported, flexible AM
∙ Incorporate different levels of homogeneity

1. Independent agents
2. Agents go to one other activity (school, work, neighborhood)
3. Multiple activities

∙ Compare CM and AM parameters empirically

∙ Empirically determine when different regions can be combined
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Thank you!

Questions?
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