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We want to improve disease forecasting

Better statistical forecasting includes:
• Understanding of underlying assumptions
• Incorporation of high-quality data
• Attention to variance of forecasts

Our work:
• Empirical Bayes model to forecast the flu
• Exploring agent-based models (ABMs)
• Visualizing the spread of disease

Disease is costly

For influenza in the US alone every year,
• Tens of thousands of lives are lost
• Nearly $80B in healthcare costs
• 31.4 million outpatient visits

Improved forecasting can alleviate these costs!

Forecasting the flu in the US

Goal: Forecast wILI (weighted influenza-like illness),
• For every week in the season (with new data each week)
• For 10 regions in the US
• Emphasis on peak week and peak wILI

Idea: A new flu season is going to look like a past one, with
some scaling and shifting, and regions are dependent on
one another
The model: Empirical Bayes with Regional Effects

Figure: Illustration of the model, consisting of seasonal and
regional parameters. New data is incorporated each week.

The model: wILI(r ,s)t = [as · αr] · f (t − bs − βr) + εt,, with
εt

iid∼ N(0, σ2), for r = 1, 2, . . . ,R and s = 1, . . .S and
uniform priors for the parameters.

Forecasting the flu in the US (continued)

EB: Empirical Bayes (let αr, βr = 1 for all r ) (Brooks et al., 2015)

EBR: Empirical Bayes with regional effects
Problem: EBR is intractable and we are forced to make ap-
proximations for βr
Solution: New approach: posterior biasing (PB)

Figure: Illustration of PB. The black dot is the peak. The blue
curve is given less weight than the red one because the curve
goes through the predicted peak.
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Results: PB yields improved results, while EBR suffers from the approximation we made
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Figure: Leave one-season-out cross-validation (CV) of the
three models. We calculate the CV for each week from the
observed week as we expect better results the closer we are
to the peak week
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Figure: Current predictions for the (new) 2015-2016 Flu
season with 25 weeks observed. The Texas region is
predicted to be effected more intensely and sooner than the
other regions

The “next” disease and agent-based models (ABMs)

ABMs are a viable way to forecast new diseases (e.g. Dengue, Ebola, Zika, the “next” one)

For new infectious diseases, we have

• Little data

• Less knowledge

• Frenzied awareness

• Few if any models

Solution: Simulate the spread of disease using ABMs!

SPEW: Synthetic Pop. & Ecosystems of the World

ABMs require synthetic ecosystems as input!

SPEW has generated high-quality input for ABMS:
• nearly 5 billion human agents
• 70+ countries and counting!
• automatic diagnostic reports

Status
Complete

Missing 1 Data Source

Missing >1 Data Source

Countries with Synthetic Ecosystems 
 Generated by SPEW

Figure: Synthetic ecosystems available at epimodels.org

SPEW View
shiny.stat.cmu.edu:3838/sgallagh/spewview/

Figure: SPEW View. Data visualization of historical diseases
in the US. 1st place in Pittsburgh Supercomputing Center
Public Health Hackathon
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