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How bad is the flu going to be
this year?
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..background



influenza (flu) is destructive

The flu is...

∙ old

∙ deadly

∙ costly

∙ stochastic
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we want to mitigate the effects of the flu through prediction

With accurate predictions, the flu is

∙ old
∙ deadly → manageable

∙ Resource allocation
∙ Alert health officials
∙ Issue warnings

∙ costly → feasible
∙ Fewer sick days
∙ More awareness

∙ stochastic → forecasted
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..data



the cdc collects data voluntarily from physicians

Region Year Week wILI
1 2015 25 0.55
2 2015 25 1.45
...

...
...

...
10 2015 25 0.44
...

...
...

...
1 2015 45 0.76
2 2015 45 1.57
...

...
...

...
10 2015 45 0.89

Table: Cross Section of Available data.
wILI - Weighted Influenza Like Illness
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flu curves usually have one prominent peak

Figure: Examples of wILI curves. From David Farrow’s FluV.
epicast.org
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..ada goals



wewant to predict thewili for the remainingweeks of a season

Figure: Examples of wILI curves. From David Farrow’s FluV.
epicast.org

10

epicast.org


for each of the 10 cdc regions

Figure: From cdc.gov
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we have evidence of regional dependencies

Figure: 2001 Week 51. This map is generally representative of the other
seasons, when the peak flu season begins. Region 6 (Texas +) is hit hard and
first. Regions 1 (NE) and 10 (PNW) are barely effected. PA is generally in the
middle.
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for each region and any amount of data, we want to

1. Allow for regional dependencies
2. Predict the wILI values for the remainder of the season

3. Predict specific targets
∙ Peak Week
∙ Peak Height/Incidence

4. Produce distributional forecasts

5. Explain our model to health care professionals
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..modeling



we want to build upon prior work on empirical bayes

Figure: From delphi.midas.cs.cmu.edu.

Empirical Bayes (EB) Framework is based on the assumptions:

1. A flu curve will look like a past curve + modifications + noise

2. The regions are independent from one another

15
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modeling summary

1. Create EB model with regional effects for full curve

2. Validate model through cross validation

3. Rejoice over great results

4. Create another model focusing on targets

5. Combine two models (Posterior Biasing)

6. Cross validate

7. Finish
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the full model relies on uniform priors.

Y(r,s)t ∼ N(µ(r,s)
t , σ2)

where

µ
(r,s)
t = [as · αr] · f(t− bs − βr)

for week t, region r, season s and priors:

as ∼ Unif(2, 10) -seasonal scaling
bs ∼ Unif{−6,−5, . . . , 6} -seasonal shifting
αr ∼ Unif(0.25, 1.25) -regional scaling
βr ∼ Unif{−3,−2, . . . , 3} -regional shifting
f ∼ Unif{F̂} -smoothed observed curves

σ2 ∼ Unif(0.5, 2.5) -variance
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the model relies on seasonal variables
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fitting a model across regions is expensive

For given season, given weeks known, the posterior is

P(fut. wILI|obs. wILI, params) ∝ 1
σ
exp

{∑
regions r

∑
obs. weeks t(y− ŷ)2r,t
2σ2

}

Recall the priors for the regional variables are

αr ∼ Unif(0.25, 1.25) -regional scaling
βr ∼ Unif{−3,−2, . . . , 3} -regional shifting

=⇒ If we choose just 5 values for each parameter, then summing
over the regions is 2510 possible combinations!

Approximation: Fix the regional variables through min. error.
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predictions from eb with regional effects look like flu curves
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but the approximations in implementation hurt us.
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estimating a point is simpler than estimating a curve
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(b)

Figure: Leave-one-season-out cross validation for EB with regional effects
(a) and a targetted regression (b). The x-axis is the weeks from the observed
peak and the y-axis is the mean absolute error.
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we train our data on three different sets of data

Peak Heightr,s = α
(r)
0 Yt,r,s + α

(r)
1 Yt−1,r,s + α

(r)
2 Yt−2,r,s + α

(r)
3 Week

+ α
(r)
4 ·Max Height Obst,r,s + α

(r)
5 ·Max Week Obst,r,s

+
∑
i̸=r

(
β
(r)
0,iYt,i,s + β

(r)
1,i Yt−1,i,s + β

(r)
2,i Yt−2,i,s

)
+ ϵ,

∙ Model I
∙ Complete independence. Train separate model for each region.
(All βj,i = 0)

∙ Model II
∙ United Model. Same model for all regions.
(All βj,i = 0, α(r)

i = α
(r′)
i for all r, r′)

∙ Model III
∙ Semi-Dependence. Train separate model for each region and
impose sparsity penalty on the βj,is, j ∈ {0, 1, 2}.
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variable selection reveals regional dependencies
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Figure: Arrows colored by size of effect. A line between regions indicates
that one of the region’s was used in the other region’s regression model.
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we ended up fitting a partially linear additive model

∙ Spline fit on the lagged values of the region in question

∙ Incorporation of regional effects
∙ Mixture of Model I and Model III - chosen by lowest CV error
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ultimately, we want to bias estimates/shrink posterior
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Figure: Image depicting of weighting curves whose peak values are closer to
our estimated values. A thicker line represents a larger weight. The blue dot
is our estimated value of the peak height and week.
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posterior biasing yields improved results
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Figure: CV averaged over the different seasons for the different model types.
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..final results



wrapping up everything

.....

Final Results

.

Model Season CV CV St. Dev. Pros Cons

EB 179 40 Baseline Independ.
EB w/ Reg. 187 48 Regional

Effects
Curse of

Dim.
Target 57 7 Simpler No Curve
Post. Bias. 91 28 Flexible Interpret.
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we achieved our goals with posterior biasing

1. Allow for regional dependencies - Targets use regional data
2. Predict the wILI values for the remainder of the season -

Competitive Model

3. Predict specific targets - biased toward targets
∙ Peak Week
∙ Peak Height/Incidence

4. Produce distributional forecasts - We have entire posterior

5. Explain our model to health care professionals - will talk to
other MIDAS researchers
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looking forward

∙ Submit predictions to CDC Flu Prediction Contest

∙ Quantile Regression

∙ More regional data
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thank you
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