DESCRIBE MORE

distance_psuedo_density_function(x, x_new = NULL, sigma = 1, df_out = "auto")

# S3 method for matrix
distance_psuedo_density_function(x, x_new = NULL, sigma = 1, df_out = F)

# S3 method for tidy_dist_mat
distance_psuedo_density_function(x, x_new = NULL, sigma = 1, df_out = T)

Arguments

x

a n x n square positive symmetric matrix or a tidy_dist_mat

x_new

a n_new x n matrix or tidy_dist_mat where the rows correspond to new observations, the columns correspond to points in x (if x and x_new are matrices then they need to be corrected ordered). If this value is not NULL (default is NULL) then the psuedo-density vector will be calculated for these observations relative to observations defined with x and x_new's columns.

sigma

scaling parameter. Can either by a standard numerical value or a string as a percentage (e.g. "20%")

df_out

indicates if one should return a data.frame our a vector, by default returns data.frame if dist_mat is a tidy_dist_mat, and a vector if dist_mat is a matrix.

Value

depth vector length n with depth values associated with indices in x or a data.frame with a column called psuedo_density

Examples

## matrix-only examples dist_mat <- matrix(c(0, 1, 1.5, 1, 0, 2, 1.5, 2, 0 ), nrow = 3, byrow = TRUE) dd_vec <- local_distance_depth_function(dist_mat) # c(1,0,0) ldd_vec1 <- local_distance_depth_function(dist_mat, tau = 2) # c(1,0,0) ldd_vec2 <- local_distance_depth_function(dist_mat, tau = 1.5) # c(1,0,0) ldd_vec3 <- local_distance_depth_function(dist_mat, tau = 1) # c(0,0,0) ldd_vec <- local_distance_depth_function(dist_mat, tau = .1) # c(0,0,0)