pulling out data points from curves that are ranked highest based on quantile function.

quantile_curves_to_points(
  x,
  alpha,
  dist_mat,
  dist_func = distance_depth_function,
  ...
)

# S3 method for list
quantile_curves_to_points(
  x,
  alpha,
  dist_mat,
  dist_func = distance_depth_function,
  ...
)

# S3 method for grouped_df
quantile_curves_to_points(
  x,
  alpha,
  dist_mat,
  dist_func = distance_depth_function,
  ...
)

Arguments

x

list or grouped_df containing curves, with index ordering associated with the dist_mat's row ordering

alpha

the proportion of curves to be removed before presenting all the points together. Takes value in [0, 1.0].

dist_mat

distance matrix

dist_func

function to calculate quantiles via the distance_matrix

...

additional parameters to be passed to the dist_func

Value

data frame from curves of the top values associated with the dist_func

Details

This function for lists (renamed as depth_curves_to_points) is shared with TCpredictionbands on github: TCpredictionbands.

Examples

library(dplyr) set.seed(1) random_data_list <- lapply(1:5, function(x){data.frame(matrix(rnorm(10), ncol = 2))}) dist_mat <- dist_matrix_innersq_direction(random_data_list, position = 1:2, verbose = FALSE) combined_points_list <- quantile_curves_to_points(random_data_list, alpha = .2, dist_mat) random_data_grouped <- random_data_list %>% do.call(rbind, .) %>% mutate(id = rep(1:5, each = 5)) %>% group_by(id) combined_points_grouped <- quantile_curves_to_points(random_data_grouped, alpha = .2, dist_mat)